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ABSTRACT 

A compilation of techniques of analysis for ortho- 

gonally stiffened, flat, rectangular plates, with 

various combinations of loading and support conditions, 

is presented.    The specific types of plates considered 

are sandwich,  corrugated, rib-reinforced, and integrally 

stiffened.    Orthotropic plate theory is used as the 

major form of solution throughout the report. 

A complete bibliography,  consisting of more than 

three hundred references,  is included. 
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INTRODUCTION 

Historically, the first example of a stiffened plate 

was a flat slab, reinforced by attached unidirectional 

girders. Later, stiffening was provided by transverse, 

as well as longitudinal, beams. Such configurations are 

still prevalent in the construction of ships and bridges. 

Concern about saving weight, while retaining strength, 

in the design of aircraft resulted in the development 

of sandwich construction, in which two thin plates which 

carry tensile and compressive loads surround a light- 

weight, but relatively thick, core designed to transmit 

shear.  Corrugated plates also have been a popular form 

of construction for many years. However, the most recent 

developments have been in the area of integrally stiffened 

plates such as "waffle" and "dimple." The principle upon 

which all of the latter are based is the removal of 

material from the neutral axis of a flat plate by rolling, 

pressing or punching, or upon the reduction of an origin- 

ally flat thick plate by milling into a thin plate with 

ribs. 

It is interesting to note, from the curve shown 

below, that interest in orthogonally stiffened plates 

has been increasing steadily. This, in itself, demon- 

strates a need for this survey of work in the field. 

' '■  ' M«***» 
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History of Interest in Stiffened Plates 

A great deal of work in the area of structural 

analysis of orthogonally stiffened plates has been per- 

formed during the past twenty years. Many unique tech- 

niques of solution have been presented and a great 

number of specific problems have been solved. But, due 

to such a wide scattering of work in this area, it has 

been extremely difficult for the practicing engineer to 

find, in a reasonable amount of time, solutions to 

specific cases. For this reason, the writer felt that 

there was a definite need for consolidation of this 

research into a single report. 

This study, therefore, represents a survey of the 

most common analytical techniques in the area of 



I 
orthotropic plates. Within the body of the paper, methods 

of solution for sandwich, corrugated, rib-stiffened, and 

integrally stiffened flat, rectangular plates under static 

loading conditions are presented. In addition, a complete 

bibliography is provided for researchers who desire to 

study specific problems in more detail. Since the titles 

of most of the listed papers quite satisfactorily explain 

the contents of the papers, the bibliography should prove 

to be a useful tool. 

Basically, there are three major techniques of 

analysis of orthogonally stiffened flat plates. The 

first method is based upon the replacement of the actual 

plate with a grid system of bars. The major fj.aw of 

this method of attack is the neglect of torsional 

rigidities resulting from interactions of the bars. A 

second technique is based upon energy concepts. This 

is rather straight-forward but errors are often intro- 

duced due to a failure to satisfy all boundary conditions. 

The third method of analysis is orthotropic plate theory, 

which provides continuity of the plate. Although the 

latter method requires rather difficult solutions for 

complex boundary conditions, this technique is the most 

general and most accurate. For this reason, orthotropic 

plate theory is employed throughout most of this report. 



The characteristic equation is first developed and it is 

then applied to various plate configurations, loading 

cases, and support conditions. Finally, experimental 

techniques for determining orthogonality constants are 

discussed. 

The writer wishes to express his gratitude to the 

U. S. Navy Marine Engineering Laboratory for initially 

arousing his interest in this area. This report is, to 

a large extent, based upon work the writer performed for 

USNMEL during the summers of 1964 and 1965- The writer 

also wishes to thank Dr. Michael C. Soteriades of the 

Catholic Univerity of America for his kind advice and 

to Dr. Richard D. Mathieu of the U. S. Naval Academy 

for his encouragement during the preparation of this 

paper. In addition, the writer wishes to thank 

Mrs. Kathy Jones for typing the manuscript. 



PART 1 - DIFFERENTIAL EQUATION OF DEFORMED PLATE 

The derivation of the differential equation of the 

deformed orthotropic plate appears in many of the refer- 

ences (1, 6, 7, 37, 40, 41, 56, 97, etc.) cited here. 

In the derivation, it is assumed that:  the load 

acting on the plate is normal to the middle plane; 

planes normal to middle surface of undeformed plate 

remain normal after deformation; loads are reacted in 

shear and flexure; transverse shear deformation can be 

neglected (this constraint will later be removed in a 

refinement of the theory). 

An element of the plate (Figure l) is considered. 

The directions shown are considered positive (right-hand 

rule is used for moment vectors), and the coordinate 

axes are chosen to coincide with the principal axes of 

orthotropy. 

1.1 Expressions for Stress and Strain 

In order to evaluate the forces and moments of 

Figure 1, it is first necessary to write the expres- 

sions for the strains and the stresses.  Letting the 

subscripts define directions, and using Hooke's Law: 
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where 

€,T « normal and shearing strains, respectively, 

(T,T * normal and shearing stresses, respectively, 

E,C-i s moduli of elasticity and rigidity, respectively, 

^ " Poisson^ ratio. 

Solving these expressions simultaneously gives the 

stress equations: 

(6, ^^.e^ > 

01 X-.   (ey ^M,^,,); 

T » «y y * 

(2) 

It is generally  convsnient to wi'ite the strains  in 

terms of simplified constants with matrix subscripts. 

Then,  the expressions  for strains   (Eqs.   (l))  become: 

«. 1 i» 

Zl 

O 

O 

o 
1 ["■■ 

Sfctl V, 

C3) 

where 

■" -.«»Kt«f.^>. 



But, due to symmetry: 

it 'A, 
^ - - ^/E. 

di?y 

and there remain four elastic constants of the ortho- 

it Sk. 
(4) 

tropic plate. 

1.2 Geometry 

Consider a plate element deformed as shown in 

Figure 2. 
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The slope  of tKe deformed surface, 

3x (5) 

The curvature of the deformed surface, 

» (6) 

where p is the radius of curvature. The "twist" of 

the surface, 

?*1 
y w 
9K a> 

0) 

If %  is the normal distance from the middle sur- 

face of the plate to an investigated point, the strains 

can be written in terms of the geometry: 

e.  « -   « ab - e r«, 
e* a^ 

€y    . 
fy 

m 
ay* ^ 

day     * 
2* 

s 2*  9lw 

(8) 

1.3    Final Stress Expressions 

The final stresses are evaluated from Eq.   (3), 

by inverting the matrix of elastic  constants: 
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Substituting the results of Eqs. (Ö) into Eq. (9): 
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1.4    Bending and Twisting Moments 

Recalling that i is the normal distance from the 

neutral surface, the stress couples can be evaluated 

from Eqs.   (ll),   (12),  and  (13): 
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1.5    Rigidity Constants 1 

The bending moment expressions can be rewritten in 

a simplified form: 

where 

(•7) M.--D. [B+^^ 

"    flexural rigidity in x-direction, 

n   «    c:tr  CzO 

*   flexural rigidity in y-direction, 

] 

a  torsional rigidity. 

12 



It should be noted, at this point, that various 

systems for indexing of these rigidity constants are 

found in the literature. This variety of nomenclatures 

is extremely confusing due to the fact that a symbol 

may appear in several technical papers with a different 

meaning attached to it by each author. Most of the 

confusion arises from the assignment of symbols to the 

torsional rigidity constant. .The symbol D has been 

chosen here because it does not appear in the reviewed 

literature, and, it is hoped, will help to avoid 

misunderstandings. 

1.6 Shear Forces 

With reference to Figure 1, the equation of 

equilibrium of forces in the z - direction: 

m + ^y + p « O. (») 

The  equation of equilibrium of moments about  the 

x - axis: 

m,  _   W    +    Q o. (24) 

From the equilibrium of moments about the y - axis: 

1"* 
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after substitution of 

Substituting Eqs. (17), (18), and (19) into Eqs. (24) 

and (25), and solving for the shears, 

E] 
El 
El 

Or'   -H [|f. •*■ A,]" P. ^      '*    1! ] 

in 
1.7    Differential Equation of Flexure j 

Substitution of Eqs.   (24)  and  (25)  makes possible 1. 
i-   J 

the writing of the equilibrium equation   (23)  in terms 

of the moments and the  load: j 

ifj**  -  2   C?l!^y     +   ^-ll^y     - - p   . (29) 1     ] 
Sx1 3x3y 3y* r J     J 

Finally, from the substitution of Eqs. (17), (18) and        . 

(19), the general differential equation of flexure of        '  J 

the orthotropic plate is written: |  1 

For simplicity, the final form of this equation is given     i  ^ 

I   i 
as: 

Ml 
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where 

(V) tV ^ 2KD- ^^f)' 

l.B    Consideration of Shear Effects 

It is recalled that one of the assumptions of the 

above derivation was the negligible effect of trans- 

verse shear. It must be recognized, however, that such 

an assumption is not always permissible. In some plates, 

such as sandwich (see Part 5), a low stiffness gives 

great importance to the contribution of shear to 

deflection. 

For this reason, several investigators have con- 

sidered this effect. Reissner (Refs. 78, 169) first 

recognized this problem, and it has since been applied 

to orthotropic plates by Crawford and Libove (Ref. 305), 

Girkman and Beer (Ref. 21), Libove and Batdorf (Ref. 155), 

March (Ref. 159), Medwadowski (Refs. 62, 63), Suchar 

(Ref. 93), and Wang (Ref. 177), among others. 

Using matrix notation consistent with that of 

Eq. (3), the stress-strain relationship is given by: 

15 
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Due to symmetry, 

and the elastic properties of the plate are character- 

ized by nine elastic material constants. Thus, the 

effect of transverse shear, together with that of 

transverse normal stress, is considered. 

Medwadowski (Ref. 62) applies nonlinear theory of 

elasticity to the derivation of the characteristic 

equation of the orth(Ptropic plate. He formulates the 

problem by using a system of sixteen simultaneous 

equations — Eq. (33), equilibrium equations, and 

strain-displacement relationships. The problem is 

reduced to a two-dimensional one by the introduction 

of body-force resultants, X" and Y", and weighted 

displacements, u, v, and w. With the introduction of 

the Airy stress function, ^> , Medwadowski reduces the 

] 
1 
J 

J 
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number of equations to the following four: 

»  O , 

(Mi) 

O ♦ A ^y + A ^?y » A 1 ^ ^y * A5 ^ + A6 ^  A7 ^^^ -B^ 
+ A ^ 

kx>) 

where 

Aj* constant, depending on elastic properties 
and thickness of plate, 

P»Pa" loads acting on upper and lower faces of 
plate, respectively, 

P« resultant body-force potential, 

X,Y,&*X,Y ■ body-force resultants, 

<3> • Airy stress functions, 

17 



linearized and reduced to a single partial differential 

equation of sixth order through the choice of 

If 

1 
and the remaining symbols have their normal meanings,        1 

as used throughout this paper. 

The effect of an elastic foundation at face 

z = "t/2 is considered, and a system of four partial 

differential equations, governing the oscillations of 

an orthotropic plate, is written. The system is then        | 

] 

1 

F(x,V,*)    = stress function. 

The values of the constants contained in this fundamental     -1 

expression are then given, and the solution of the n 

equation is taken to be of the Levy-type. 

When the body-force terms and the effect of trans- 

verse normal stress are neglected and elastic foundation 

modulus is set equal to zero, Medwadowski's linearized 

equations which govern the bending behavior reduce to 

the less complex expressions of Libove and Batdorf 

(Ref. 155). 

Since the Libove-Batdorf paper uses a definition 

of plate rigidities which is somewhat unique, no attempt 

is made here to make these conform to the definitions 

used in the previous derivations. Therefore, let 

j 

D 



D. 

D. = - 
-(>*) 

analogous to the constants defined by Eqs. (17) and (10). 

The twisting rigidity retains its definition as given 

by Eq. (19): 

In addition, Poisso^s ratios are defined in terms of 

curvatures: 

'Bw, 
v7x - - 

-y 

^ 

^/ay^ 

to) 

The refinement to the orthotropic plate theory, 

which was presented in the first part of this section, 

is introduced in the form of shear stiffnesses. 

Q- 
^ 

<**/, 
ax (40) 
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y 

The bending moment equations which originally contPined 

flexure terms only (Eqs. (17), (10), and (19)) are now 

refined by the consideration of the shear contribution: 

™*l      ^ [^x^y  2Ii ^y J * 

(40 

(42) 

(4«) 

Substituting the above equations into Eqs. (24) and 

(25), and applying the equation of vertical equilibrium: 

SJ  ^  P *^- 3xv CN«y'5k:ay+INt -ay-' ^ 

three equations in w, Qx,  and Q    are written: 

20 
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R]^, 
(45) 

h. 3x3 y axVJ 
vv/ 

+ [■1    &  X   +      fi^.y       ^L   iQ   .0 

(-«.) 

+   Q^y Ji *JL  (47) 

These equations are then solved for w, Q , and Q^ 

by means of determinants. 

21 
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1.9   Summary .; 

In general, orthotropic plate theory which omits 

the effects of transverse shear gives good results for 

orthotropic or orthogonally stiffened flat plates. 

Due to the complexity of the problem, it is often 

worthwhile to "trade off" a small degree of accuracy 

for a great amount of computational labor. However, 

the analyst must take care that these errors do not 

become significant. - i 

Summarizing the results of the bending theory of 

orthotropic plates, the differential equation of flexure 

is recalled: 

where 

D -    .E-1!        . 

l 

I 

The stresses, as given by Eqs. (ll), (12), and (13), * 

i 
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where 

^ti s   c. 

I 

The practical application of orthotropic plate 

theory depends upon the solution of the lateral de- 

flection, w. This function is found by solving the 

fundamental equation (31) for a given set of boundary 

conditions. Then, it is possible to evaluate stresses, 

strains, moments, and shears. The application of the 

theory to specific cases of bending is considered in 

the following section. 

2? 
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PART 2 - METHODS OF SOLUTION - TRANSVERSE LOADING 

The solution of the basic differential equation (31) 

of the orthotropic plate, 

is accomplished by one of the following methods: 

^48) 

2.1 Navier Solution 

A double Fourier series solution of the form 

i(*.y) ■ £ £ ^ s- T? "" T* ' 
mal       Hsl 

was used by a majority of investigators.     Huber  (Refs. 

37-4l) was the first to give his attention to ortho- 

gonally reinforced plates and his approach was based 

on the Navier-type function.    Some of the  other in- 

vestigators to employ this method of attack were Csonka 

(Ref. 220),  Giencke   (Ref. 239), Heller  (Ref.   309), 

Kaczhowski  (Refs.48,  49),       Nowacki  (Ref.   71 ), Raville 

(Ref.   168), Robinson   (Ref.   79 ), Schumann   (Ref.   278), 

Soper  (Ref.  90),      Timoshenko and Woinowsky-Krieger 

(Ref.     79),    and Tolotti and Grioli   (Ref.   290). 

PRECEDING 
PAGE BLANK 
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The Navier solution is simple and straight- j [ 

forward, even for complex loading conditions. However, 

the method becomes cumbersome in application due to its 

relatively slow convergence property.  It is mos1, 

undesirable, from a computational standpoint, vrhen 

higher derivatives of the deformation function, w, 

are involved. 

2.2  Levy Solution 

W a 

2.3 Other Solutions 

Most of the recent work has been concerned with 

improving upon the computational labor involved in 

The Levy-type solution is based on a single series 

expression of the form: j 

where Y is dependent upon y and independent of x. This 

technique, which is generally more efficient than the 

above type, was employed by several investigators, among 

them Ando (Ref. 209), Cornelius (Ref. 12), Hajek (Ref. 2$), 

Lekhnitsky (Ref. 50), Schade (Refs. 273-276), and 

Timoshenko and Woinowsky-Krieger (Ref. 97). 

o/T 

1 
1 

] 
3 

] 



solving the fundamental equation.    Solutions have been 

submitted in many forms: 

2.3.1 Maclauri^s Series 

Rajappa and Reddy (Ref. 77) have applied Maclaurin,s 

series to the problem of the simply supported rectangular 

plate and written the deformation equation: 

with jhe origin of the coordinate system taken at the 

center of the plate. 

2.3.2 Affine Transformation 

Brilla (Ref. Ö) makes use of the transformation, 

to solve this problem which satisfies the condition: 

The condition of Eq. (52) was recommended by Huber 

(Ref. 40) for reinforced concrete slabs, and is dis- 

cussed by Timoshenko and Woinowsky-Krieger (Ref. 97). 

27 
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2.3.3     PerturcaiioL ci.niu ue 

^•7,, 

dition and is given by 

oi 

e: 

changes  the basic  differential equation   (31)   to: 

techniques  is made  in Reference 101.     It  is shorn tr;Pt 

for the  case of a uniformly  loaded rectangular  ort-iv"-- 

tropic  plate on simple supports,  the  perturbation 

solution gives results  of reasonable accuracy,  while 

requiring  considerably less  computation  time  than the 

Navier and  Levy techniques. 

1 
Vinson with Bruli 3r.d Hess (Refs. 34, IC.I-K'3) ..-.aKS 

use of the same transformation as Brills (Eq. (cl.)). an;      I 

then go on to obtain a perturbs tier excausi /.    ir. ..•i. 

a for plates with rigidity ratios which sa4 i3iy ;.. 

condition, 

The parameter, a, measures the deviation fro::, thi-i c 

1 
1 
] 

This expresL.-on, together with the transformation, 

I 

^ 3y DK J 
A  comparison between this method and  the standard 

1 
1 
1 

2.3.4 Complex Variables I 

Mader (Ref. 61) considers the special condition 

specified by Eq. (52).  Here, the basic differential 1 



equation   (31)  is written: 

D   -   2 D   rrf   +    D   m4   - O, Csfe) 

where 

rr\ ■'■J%[''-^] 
The solution has  the form: 

w [C *(e**4>)y 

•*• C4 e 
-ot(e-/4>)y 

5ir4   OX     , 

Kö*A*)y 

^7) 

where 

ot *   <* yj -= 
Y 

p . i*(et^4.) a    Tn&  . 

Suchar  (Ref.  93)   introduces the complex variables, 

Tt    • X   -»•   >«. y « «    X  -   AV    ,, (sa) 

and parameters suggested by Lekhnicky  (Ref.   50), 

?9 
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to rewrite the basic d'i t crdiitial equation of zY.e 

orthotropic plate: 

in which 

is a real solution of the characteristic  equation. 

In addition, Morkovin  (Ref.  65)  also employs a 

complex variable approach to the problem. 

2.3.5    Energy Technique 

A direct method of calculating stresses  in ortho- 

tropic plates, without the usual intermediate step of 

calculating deflections,   is presented by Coull (Ref.  13). 

The method of least work is employed. 

The total strain energy due to bending is given as: 

U - f, j] [A„ M.%. A.. M; ^ An M; - ZA„ M.My 
0 e+£ ^.(X+i^yj^d*, 

fel) 

TO 



where the consi 

A.,- 

A«- 

:ants, 

Ev 

E, E  -F* 

A   _  EA 

The plate considered is supported along, and parallel 

to, the y-axis, and it is free' along the two remaining 

edges. 

The moments and forces in the plate are expressed 

in terms of a single series, and two loading cases, 

symmetrical and antisymmetrical, are utilized. The 

solution involves an assumption of an n-th order 

polynomial for the bending moment M , which makes possible 

the writing of a set of n linear differential equations 

with constant coefficients. 

2.3.6 Design Application 

An interesting and useful set of tables for the 

design of orthotropic plates with various edge supports 

and under various loadings is given in a dual-language 

(English and German) book by Krug and Stein (Ref. 57). 
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i 
The basic equation (31) is used, 

and the following notations and transformations are 

introduced: j 

* 7* (to) I x 
L u 

l 
Using the above notation,  the differential  equation of ' j 

the unloaded plate becomes 

In order to reduce the number of parameters necessary 

to define a particular plate from three to two (X and £ ), j 

the loading is referred to the  § , ^ — coordinate system 

(Fig.  3) and the ratio, n 

T^ 

i: 

I. 

n 



is introduced. 

*' 

Figure 3 

Transformed Plate 

In the book, charts are drawn for the values, 

e . 2.00;I.Z5;l.00;0.60;O.5O. 

X - 0.80;O.40;O. 
The dimension L , from Eqs. (63) and (64) is chosen by the 

user of the influence surfaces, such that the length of 

the shorter side of the transformed plate becomes either 

20, or 16, or 10, corresponding to the given € . Some 

results of this procedure are shown in the following 

chapter. 



PART 3  - FLEXURAL BEHAVIOR 

I 

In this part, the bending problem, for various I 

combinations of edge supports and loadings, is 

considered.  The chapter is subdivided into sections 

according to the support conditions, with further sub- 

divisions made for different conditions of loading. 

In the accompanying drawings, the following notation 

is used for edge supports: 

(c)  = clamped, 

(?)  = free, 

{Sj     =    simply supported. 

3.1 Simple Supports 

The basic differential equation (31) of the ortho- 

tropic plate is recalled: 

where the loading term is a function of x and y, ' [ 

p - fC^y) ' (67) 
and it can represent any type of transverse loading on 4 | 

the plate. The double Fourier series (Navier) form of . 

this function is: 

Ü 



f(M)'^A^ ^f Sl.»Iy , («.8) 

VW   M 

where 

m = number of sinusoidal half-waves in the 
x-direction, 

n = number of sinusoidal half-waves in the 
y-direction. 

The total deflection of the plate shown in Figure 4 

is then calculated as the sum of the partial deflec- 

tions produced by the partial sinusoidal loadings of 

Eq. (68). 

1 
1 i«; 

i 

® 
i ^ 

!® 
i 

■ 

(D 

Figure 4 
Simply Supported Plate 
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I 

The general expression for the deformation of a ^ 

simply supported rectangular orthotropic plate, in 

the Navier form, is given by: - ' 

.  i 

An alternate form of solution (discussed in Part 

2) is the single-series expression attributed to Levy. 

This solution is based upon the equation, [ 

w = y Y ^ — wHTx C7o) 

3.1.1    Uniformly Distributed Load over Entire Surface 

The case of a simply supported plate, acted upon 

by a load, P  , uniformly distributed over its entire 

surface is shown in Figure 5 and considered here. 

, 

m 
in which Y is a function of y alone and the b - edges 

(x = 0,a) are simply supported. . j 

Both methods, in addition to any of the additional 

techniques described in Part 2, will be utilized here 

whenever they are applicable. I 
. 

L 
?6 ! i 



•• X 

Figure  5 
Simple Supports  - Uniform Load 

The Navier solution,  as given in Reference 97,  is 

first utilized.     To  evaluate the coefficient A      of mn 
Eq.   (69),   it is found from Eq.   (68)  that 

a b 

' *T !>*' y) 
ml 

*»»^     SIM   "7"/   cslv ölx 

O O 

For the uniform loading, 

(71) 

(72) 
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and the coefficient thus becomes: 

(73) 

.1 
] 
] 

The substitution of Eq. (73) into Eq. (69) yields the 

deformation expression for a uniformly loaded, simply 

supported plate: 

(74) 

Using the Levy form of solution, Ando (Ref. 209) 

writes the deformation equation: 

m , (IS) 

where 

A...- C' + PPS' 
5luM*orte"t   ■•-  COS-V^U 
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% -^bc--s' 

c« C-«H »aSity cos mJI*i , 

0 «  subscript indicating initial condition. 

The same problem is solved by Hess and Vinson 

(Ref. 34) using a perturbation technique. The basic 

equation is written in the form: 

X ^x 

which has the roots, 

•* 9 



s- t 
D  V\DJ  I> 

f77) 

There are, thus, three cases of solution, which are 

dependent upon the elastic properties of the ortho- 

tropic plate: 

CASE I 

(I;)' > a 
The deformation function for this case is given by: 

W Y ( jL fco« »A* + ('-«'»«^A 
fit >,*,.. 

SIMM S 

SIMM  S, 

f7a) 

CASE II: 
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Sit4   "X.X • 

C^O 

CAGE  III: 

/^y < ^ 

• (»tM\sca+^lll» «INN ÄMs4a)$.^Vsxl COSHXS4« 
2s4s6 

J 

(CO»H \s4a-co« ^«^a) 2^«^ 

(•o) 

Al 



In the above equations, the roots: 

r 

"■/f 

The coordinates and elastic  constdits are taken 

according to Figure 5,  and the parameter, 

x- — ■ 
Using these equations as models, design curves are 

plotted using the dimensionless parameters, 

as functions of the three independent variables. 

Dy D». t 
D Da 

42 



3.1.2    Uniformly Distributed Load over Part of Surface 

A simply supported plate, acted upon by a uniformly 

distributed load over a portion of its surface  (Fig.  6) 

is now considered. 

Figure 6 
Simple Supports - Partial Load   (I) 

I. 
First, the Navier solution is applied. Recalling 

the equation giving the loading coefficient (Eq. (60)) 

and applying the proper conditions: 

i: 
1: A3 



«   —, rff   SIM —-—^ ft»**  —* «i»«*   —   «IN —   • 

Substitution of this into Eq.   (69)  gives the defor- 

mation expression: 

^(80 

1 

W »±fi\  \ !^^ 
wF*       »Tlf.    NITM^    rrtTv     HiHk      HTW 

h 

tnn 
(ftl) 

Next, the L^vy-type solution, as given by Ando 

(Ref. 209) is examined. The x-coordinate is changed 

(Fig. 7) to coincide with the center of the plate. 

Figure 7 
Simple Supports - Partial Load (II) 

1 
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Deflection expressions are written for three regions  of 

the plate: 

CASE I:   *2%* y s 7i: 

+ C3 co*« *^f +c+ *»"« »»H^Y) «»M   *£!? . 

CASE II:    7   * y i Vz : 

CASE III: -Wz ' y '  % : 

wn = ^> (c, OSH ^y + c^ $.^ mB7 

^■C   COSM m^Y   •*-    C     «»MV* ^Y^ SIM *1*. 
11 a 11 ^     / <S 

The constants of the above equations are evaluated 

from boundary values: 

(s*t 

(•4) 

(t5^ 
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« ^O*H «tlEx»?, - <LO*H ^»eJ) cop* "OlEy /, 

C      «     *»«,   JL  fiwH     *!DI^,?.      -      SIMM    "ÜiLlx 

- (c^ÄM "Jin* ~ CO*M ^I>i^) COT>« ^yl{, 

it 
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-(«1MM   »üH«?.  -    5.MH   ^^TA-H  ^y]b 

- (cam  ^Z^1?. -   COSM    ^Z^^v) CX»T« ^ÜI^Y (, 
\ cH <3I / «     JJ 

- (SIMM    ^H^1?.    -   SiaH    •»'J^VO TAMH ^Z^Nl   . 

r   « Ami .Al   -«IM« Hi!12i,2»  4. 5IMH "nEi1?* 

-u^>*w «Jx«?, - COSH »r^vJ copi «^L^ (, 

f^^EZ&i   , ^   / 
2 

^7 



Zat *&-    (cos "VL^ - C05 **JJ*A 

In deriving the influence surfaces of their book 

of tables (Ref. 57), Krug and Stein make use of a 

transformation from the real structure (Fig. 8a) to a 

"new" structure (Fig. Ob). 

r 

1 

L -Li 
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m •*- * 

a) Real Structure 

A8 
j 



T l 

't 

n 

s****) 

VM 

^ 
**. 

® 
f. 

«1. 

® 

b) Transformed Structure 

Figure 8 
Simple Supports - Partial Load (III) 

The method of transformation is given in Eqs. (62) 

through (65), and the bending moments in the plate are 

,. A f»i. 
M. rjV. *e) «^4 ^v ^ 

M' '^STMt(M)^^ 
(86) 

^ ^ 
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Numerical values given by these integrals, for given 

geometry and constants of orthotropy, are given in 

the tables. 

3.1.3 Concentrated Force 

The next problem to be considered here is that of 

the simply supported plate under the action of a con- 

centrated load, P. 

The writer applied the Navier form of solution to 

this case in Reference 309. This is considered first 

(Figure 9). 

^ x 

Figure 9 
Simple Supports - Concentrated Load (I) 
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The load coefficient for the double-series solution, 

from Eq.   (68),   is written: 

•*•     ob « b 

The deformation expression is derived from the sub- 

stitution of this quantity into the general equation 

(69): 

(87) 

4P y y 5.* ^ s.». ggum ^ ™ y 
(&«) 

Ando  (Ref.  209)   solves the problem using the single 

series solution.    Using a coordinate system chosen such 

that the x-axis is located at the center, rather than 

■^he edge,   of the plate   (Fig.   10),  he writes two expres- 

. ions for the deformation: 

CASE  I:    VI * y *   %  : 

x r   V [C, ^05H   "l^y     +  q SIM«   ^1 

4 C Co,H ^V    ^ C6IMM  m3?yl S.N   ^ 1 a z i> J a 

Cn) 
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CASE II: 

C-*») 

0 
n 
n 
n 
n 

r- 

»•x 

Figure 10 
Simple Supports - Concentrated Load (II) 

il 
n 
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The constants of Eqs.   (89) and  (90) are the following: 

C - 1IL2LL  f - *IMM "HlW - (com ^JLi1? 
1 D.JTPtf-V) I       a    \    a 

2 IJnnrY*^L      a    \     a 
. Co7M *H^y)] sin "SSS , 

— V 

C . ^^^ f- do»« »"ÜJ*'? + (*w« •ü^'z 4 P^TT^W1       ä ^ 

Co Tw r^y)] «IM »»SIIä . 

As in the previous case, Krug and Stein (Ref. 57) 

make use of the transformation of coordinates, as illus- 

trated in Figures 11a and lib. 
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a)    Real Structure 

i« 

^ 

® 

i 

• - 

^ 

b) Transformed Structure 

Figure 11 
Simple Supports - Concentrated Load (III) 
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Using the transformations given by Eqs. (62) through 

(65), the moments are given: 

M.* 8*71 p^'') ^'^ ■ 
^' swTf p&n) W'*) 

N 

to, 

Obviously, superposition is used for the calcu- 

lation of deflections in the first two solutions, when 

more than one concentrated load is acting, and the 

latter solution (Eq. (91)) can be rewritten in the form: 

M. '^71 £?(*•'*) M,«,,*).       «* 
3.1.4 Line Loading 

In solving the problem of the simply supported 

plate under the action of a linear load parallel to the 

x-axis (Figure 12), Ando (Ref. 209) uses Eqs. (09) and 

(90) to give the deformation for the ranges "Z < y < b/Z 

and y < *i , respectively. The constants are evaluated 

as follows: 

C - ^3JL -«»mi "üÜ^ - ^»*H *B»i TANH »"By)] , 



and 

D 

C   . it2£. f cos« "I?t 4.(».-M •"3^'2 «»T», «UVJI , 

r • is22L r«w« "ÜB? -(eo« "ü»'?i»»'M,^y)Ii -i 

C4 '^[-"-   -^+ (»- ^ -T- "1% ] 

1 
1 
1 
] 

I 

I 

II 
0 

The load, F (Jf ) is represented as a single trigono- 

metric series. 

Should one consider the special case where ehe 

load acts on the x-axis (? = 0), the constants simplify 

to: 



^* 

Figure 12 
Simple Supports  - Line Load  (I) 

A more general inclination of the line load is 

considered by Krug and Stein  (Ref.  57).    As previously 

described for other loadings,  the coordinates are trans- 

formed from those of Figure 13a to those of Figure 13b, 

according to Eqs.   (62)  through  (65). 

The bending moment expressions are then given for 

the general case of variable loading,  J  : 

^7 
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a)    Real Structure 
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b) Transformed Structure 

Figure 13 
Simple Supports - Line Load (II) 

For the special case of a load uniformly distributed 

along a line, o^ course, -$•{$)  =fJand it is placed in 

front of the integral sign. 
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3.1.5 Moment Distributed Along a Line 

The problem of a simply supported plate under the 

action of a uniform moment distributed along the y = b 

edge (Fig. 14) is considered by Vinson and Brüll (Ref. 103) 

I 
I 

Figure 14 
Simple Supported - Edge Moment 
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Using the transformations, 

the boundary conditions are: 

_  3 w 

« 

^x1 
(0,7) S ^»(a^y)    ^y 3 * • O, 

C^O) 

MC^E) . M. 

A4) 

If the perturbation solution is limited to cases where 

the rigidity ratios (Dy/Dx) and (I)xy/Dx) are nearly 

equal, the basic equation (31) of the orthotropic plate 

is rewritten: 

^K4 
T W ^w 

3K
%
9V* O. 

where 

The solution is taken as a series in powers of 

which makes Eq, (97) become: 

M.I ' 

(^7) 

(-») 

&) 
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where the operator, 

Since the curvature vanishes along edge y = b, the 

moment, 

M (x,fc) - M - - D,  |k («>) . 

and by substituting Eq.   (9Ö)   into Eq.   (100), 

M 

(\oo) 

4f <*> V 

9y* 3y% 3/* 

►C10O 

The governing equation for the first term of the 

solution is 

and the boundary conditions are: 

(»Z) 

0 

0 

Akt   ED<es 

y « 0 

M 

Ooi) 
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The solution is taken in the form: 

where    i#    satisfies homogeneous boundary conditions 

and 

f(7).-4[| -by]- oos) 

From previous conditions,  the function, 

+ (C3 * C4K) SI^H ^X J SI* \, y , 

where the constants, 

7 

C      -  Mb1 (■ 0      (UCOSH"X^dX^q-2s»MHA.a) 
*              DYm*ir*    * SIMM*  A^d ' 

L/4  s   -    ■ r—       ) 

and 

b 
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The second term is taken in the form, 

Mil 

where the functions  ^(x) are evaluated by: 

©„Cx) - (c^Qx ^-^x^ A.X*) CO*M \.a 

where the constants, 

c. • o, 

_    A»   f ^    ^     2X.Q  COSH  >^,gt 
\,  L SIMM   'A,,.^ 

-♦•   g Ci-^rg       (COSMA «i SIMHX a *2A äI+X a SIM« A a) 

♦   . ^^ (*> co»H\a «.M«^   4-31 d 

•0o7) 

6^1 



and 

A. 

A, 

A. 

. (Ct7sm*C4)X.   , 
8 

24 

 %  

The evaluation of these terms is necessary before the 

deformation equation   (90)   can be solved. 

A more general case of a non-uniform moment dis- 

tributed along any line parallel to the x-axis  (Fig.   15) 

is  considered by Ando   (Ref.  209). 

& 

T 

iH 
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5. 

'     Figure 15 
Simple Supports - Line Moment 
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The problem is solved by using the solution of Part 

3.1.4 for a line loading. If a linear load, such as 

that of Figure 12, acts on the plate, and another 

load of the sarre intensity, parallel and very near 

to it is allowed to act simultaneously in the opposite 

direction, a line couple is created. This is shown 

in Figure 16. 

■ 1  

L ■ ® 

(5) 
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Figure 16 

Simple Supports - Line-Load Couple 
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Thus, as 

the loading of Figure 16 approaches that of Figure 15, 

and 

M(x)" (feo F(x) ^-^ • (,08) 

Thus, the deformation for two regions is again given 

by Eqs. (09) and (90), and the constants for this 

loading condition are: 

C    -      Er^y      f-^OSM    "SÜ*   -    (SIMM    "lÄ* 

•M^y    I   SIMM      "»Z^      +    ("COSH     »"HA*? 

C     o.    ^ni\V [COSH   »TLII^*?   -     (SIHH   •^lE^'? 

TAMH     «"T^ 

c . E 
2       2 

C        »     ^^^   f-  6INJH   '«ID»?  +.   (c« 
4    2(7:-y)1- ^ 

COTH -^y)], 
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and the loading term, 

D,m-r 
«. 

The problem is greatly simplified,  of course, 

when the line of the moment coincides with the 

x-axis.    Then,  the constants become: 

3.2-2 Opposite Edges Clamped and the Other Two Simply 
Supported 

Since the problem of an orthotropic rectangular 

plate having two opposite sides built in and the two 

remaining sides simply supported is of some practical 

importance,   it deserves discussion here.    Several 

loading conditions are considered and the method of 

Ando  (Ref.  209)  is utilized. 
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3.2.1 Uniformly Distributed Load 

A plate with a uniformly distributed loading 

acting over the entire length, b, and over a portion 

of the length, a, is considered (see Figure 17). 

The notation (S) is again used to indicate simple 

supports, and © designates clamped edges. 

A 

(cj 

m 
-Hj. i~ 

\ 

1 

•*» x 

Figure 17 Mgure i.( 
®-©-@-®   " Uniform Load 
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The deformation equations (83), (84), and I85) 

are again used as the basic expressions. Due to the 

boundary conditions: 

Wi . O - I*  M  7 • t . 

w. .0.|*     n    y-t. 

and because of the simplification of the loading 

(relative to that shown in Figure 7), the constants 

become: 

c   c  c ^-^ *,h,H m'sr^ 

(»OS) 

cs. cr -c,. *-*'-" ■^, 

These values are substituted into Eqs.   (83),   (84), 

and  (S5)  and deflections are found in any of the three 

regions.    For the case of a uniform loading over the 

entire surface,  51 = 0 and   ^ = a>  in t*1* evaluation » 

of the load parameter, 

I 
I 

1 0 



AL- - SIN    »215   d^ 

.   .2q4fi  /cos ^ilö' - cos •2I?*') 

3.2.2 Concentrated Force 

Next, the orthotropic rectangular plate of Figure 

10 is considered. Here, however, the edge conditions 

are: 

x = 0, a 

y = ^ b/2 

-» simply supported, 

-•• clamped. 

Eqs. (09) and (90) are used to describe the deformed 

condition, and the constants for these boundary 

conditions become: 
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 I 5= ^ 
^y »I#IM »Öy - ^CO»M ^B7 »iNH sSy 
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In ,the special case of the load P acting on the 

x-axis, 

»2 - o , 

and the constants become: 

When the concentrated load is located at the center 

of the plate, 

i? » 0  ,    $. m 

I ' 
and the constants are simplified further: 

i.i 
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n 
3.2.3 Line Loading 

The plate illustrated in Figure 12 is considered 

next. The edge conditions are: [ 1 

x = 0,a      ■   simply supported, 

y = _b/2      *   clamped. 

The deformation equations (09) and (90) are again | 

used to give the forms of the deflected surface for the 

two regions of y. For the boundary conditions con- 

sidered here, the constants become: 

n 

-   >(f SIMM    '"l^'?]    , .1 

"I 

C     «        ^\^    [- ^ CoSH   '^L*?   ^  Xcf   SIMM   *SB? 

"J 'J 
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where f^ is defined in Paragraph 3.1.4 and the 

parameters T and ö   are given in the preceding 

paragraph. 

For the particular case of the line load F 

being applied along the x-axis, 

1=0, 

and the constants simplify to: 

r       je ^     m -r 

3.3 Infinitely Long Plate 

An infinitely long plate with the long sides 

simply supported is now considered. Since the ratio 

of b/a is very large, the use of the single series, 

Levy-type, solution is justified and the deformation 

is taken in the form of Eq. (49): 

-■Zx 
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and im  satisfies the condition: 

DY,V- 2D ^V + P ^Y - O O'o) 

The roots of the characteristic equation have four 

forms: 

roots = 

Using the parameters, 

% ?§:   ' '-^f VRRT j 
three cases (as discussed in Paragraph 3.1.1) must be 

considered: 

--' -(%■)■'§ Case I    :    JU » 1       «♦  f Ü'l  > B 
^^      o. 

i 

:i 
Case II   :    >U  - 1 «♦  (B.M  "    ^  » I 

f 
Case III:      M <~ i        t* {^£l\  <   Pr   . 

"       " J 

] 
] 



3.3.1 Line Loading 

Let the line load, q, act along the x-axis of 

an infinitely long plate, as shown in Figure 10. The 

deformation will be taken in the single series form, 

as shown by Timoshenko and Woinowsky-Krieger (Ref. 97). 

i~ ? 1 (snrnrrr ^ -» X 

Figure 18 
Infinite Plate - Line Load 

For Case I, all the roots of Eq. (ill) are real and 

the deformation, 
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012) 

For Case II, there are two double roots, and the 

deformation, 

0»^) 

In the third case, the deformation has the form, 

(»14) 

The following notation was introduced in the above 

expressions for the sake of brevity: 

U>i 

.1 
] 
.T 

i 

. J 

"1 

:i 

and Q  is the load per unit length 
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3.3.2 Concentrated Force 

Now, a concentrated load, P, is applied at 

ix. = $ ,  V = 0)   of  Figure 18. Then, the deformation 

expressions for the three cases of elastic properties 

become: 

V^» /J-. .«"V . B» M^R^»!!*^» »«c 

Cus) 

(»6») 

(in) 

Nowacki, in Reference 71, obtains a solution in 

closed form for the bending mements due to rf load of 

this type. 

3.4 All Edges Clamped 

The difficulty presented by the use of fixed 

supports in the theory of plates is many times greater 

than that encountered in beam theory. The usual method 

of solution is superposition. Generally, the deformation 

is found for a simply supported plate under the actual 
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.1 
loading, and it is added to the deformation due to 

distributed moments along the edges. 

Any of the previously discussed techniques can be 

applied to solving this problem by superposition. 

Since Ando's method has been used rather extensively in 

this chapter, it will again be applied here. 

The problem is divided into two parts:  1.) Simple 

supports at x = _a/2 edges, fixed supports at y = -b/2 

edges, and under actual loading (Fig. 19a); 2.) Fixed 

supports on y = tb/2 edges and moment distributed along 

x = ta/2 edges (Fig. 19b). The combined effect of the 

two parts is the clamped plate shown in Figure 19c. 

] 

I 
I 
1 

: 

] 

] 

] 

Figure 19 
Clamped Plate by Superposition 
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The total deformation, w, is composed of two terms 

corresponding to the above breakdown: 

w ■ WÄ * w. 0«s) 

where 

wa   = deflection of plate of Figure 19a 
under actual loading, 

Ww   
= deflection of plate of Figure 19b. 

The edge moment expression is taken as: 

M -■I F SIN *&l    > (Irt) 

where ff^ defines its intensity. 

From this, and from previous considerations, the 

deformations: 

W, . y [(-l)*(Afc +C. COSM  ^V *Ct co.« ^If) 

.  COS    Ei*    , 
a 

w   r    V [(Cs tfo5M   ^7   +   C4<r-.H  ^y) CO»   «ig« 
M 

^ fc.cosH •!LE2L,l ♦ r COSH ^35^ co« äEVI 

<IZ0) 

"(«O 
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Evaluating boundary conditions, the total deformation 

becomes: 

m .1 — 1 

(122) 

The constants of Eq. (122) have the following values 
ma 

AX wiTTXy 

Lk*'   TiCO** 12ÄY ».MH ""^^ - ^ C-ftH^YOMH "^Y 

A^'X •*SÄY 

**    'X CÄ.H ^YSIWM "20y . 7;CO»M »"A siMu "^ÖY 

4ciW C05M  ^ •^ y 
*» * ^COJM ^Y «I.IM"3$Y - >C0»H,,,OV 

.r r»i + 

40t CC*M "©Y 

^v)[(3)^%csr]]j 
KIM) 

■L(x^t(sjY*(=n+ tf-iw®** (»)']■'J' 
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The constant, A , is evaluated for each particular 

loading condition: 

a.) Uniformly distributed load {p0): 

b.) Concentrated load (P - at distance^ from left 
y-edge): 

A - --IB2L. ^ jal^ <it^ 

c.) Hydrostatic pressure (maximum p - varies along 
x-axis): 

2(-0 r.* 024) 

3.5 Summary 

Most of the available solutions to the problem 

of bending of rectangular orthotropic plates require 

the calculation of the deformation, w, as an inter- 

mediate step prior to the computation of desired 

stresses. Regardless of the method used to arrive at 

the deformation function, the expressions given in 

Part 1 are applied in the determination of stresses, 

forces, and moments. 

According to Eqs. (2?) and (20), the vertical 

shears, 
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The moments, from Eqs. (14), (15), and (16) are 

given by; 

M      Ü     Te ^  <; "i*-! 

i*   Qw M «   

The bending and shear stresses, respectively, are 

given by Eqs. (11), (12), and (13) as: "I 

[J 

0 
[1 



1 
The meanings of the parameters used  in the above 

expressions,  and the coordinate system in which they 

are oriented,  are given in Part 1 of this report. 
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PART  4  - ELASTIC STABILITY 

A great deal of research has beerj devoted to the 

problem of the stability of various types  of stiffened 

plates, with reliance upon orthotropic plate theory. 

More progress has been made in buckling theory than in 

bending theory for two reasons:    First,  the buckling 

problem of aircraft wings has been of greater interest 

than the bending problem,  and, second,  the solution of 

the former is considerably simpler than that of trans- 

verse bending. 

Some of the authors whose work is of importance 

due to either original contribution or summary of 

available methods in the general area of buckling of 

orthotropic plates are the following:     Barg   (Ref.  $), 

Gerard   (Ref.  235),  Heck and Ebner  (Ref.   30),  Hu  (Ref.  36), 

Huber   (Ref.  37),  Kollbrunner and Meister   (Ref.   53), 

Lekhnitski  (Ref.   50),  Nowacki  (Ref.  71),   Pflüger (Ref.  73), 

Pochop  (Ref. 266), Radok  (Ref. 267), Sawczuk  (Ref.  02), 

Schmit and Kicher  (Ref.  317), Schultz   (Ref.   03), Seide' 

(Ref.   2Ö0), Seydel  (Refs.   04 and 2Ö2),  Shuleshko (Ref.  86), 

Sokolowski  (Ref.  204),  Strasser (Ref.  20$),  Thielemann 

(Ref.   95), Timoshenko  (Ref.  2Ö9),  Timoshenko and Gere 

(Ref.  96), Wilde  (Ref.  105), Wittrick  (Ref.   107), and 

Yusuff  (Refs.  Ill and 300). 
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Among the contributors to special problems are: 

Feldman (Ref. 232), who presents a study of square 

orthotropic plates; Caldwell (Ref. 214*), who considers 

the special case of a plate in edge compression with 

reactions provided by edge shear; Rockey and Cook 

(Refs. 269 and 270) and Symonds (Ref. 287), who solve 

the shear buckling problem; Floor and Burgerhout 

(Ref. 233), Hayashi (Ref. 27),- and Wang and Zuckerberg 

(Ref. 294), all of whom investigate the post-buckling 

behavior of orthotropic plates; Klitchieff (Ref. 250), 

who limits his study to plates with longitudinal 

reinforcement. 

The contributors to the buckling of sandwich 

plates are not mentioned here. A summary of their 

work is contained in the chapter concerning the behavior 

of sandwich construction. 

This chapter contains only the orthotropic 

buckling theory. It should be noted immediately that 

this theory cannot be applied indiscriminately to all 

stiffened plates. For this reason, limitations are 

discussed first. 

T v 
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4*1 Limitations 

Since orthotropic plate theory is based upon 

average flexural and twisting rigidities (Eqs. (20), 

(21), (22)), it can be stated, in general, that the 

theory can be safely applied to any plate with a large 

number of equal and equidistant stiffeners parallel to 

one of the edges (Ref. 96). 

In addition, Gerard and Becker (Ref. 236) show 

by test results that orthotropic theory may be used 

in the following cases: a.) plate in compression with 

three or more stiffeners; b.) plate in shear with any 

number of longitudinal stiffenersj c.) any plate with 

transverse stiffeners which has a low or high value of 

El 
kD 

where 

El «  stiffness of stiffener, 

y       m    width of plate, 

D  • rigidity of plate. 

4.2 General Equation 

With reference to the derivation of Eq. (31), if 

the transverse load, p, is now replaced by in-plane 

forces, N , N , and N , the differential equation of x  y      xy 

39 



the deformed plate is written: 

D ^ 4-2 0 ^w  -i- D — U" 3^   ^ 9x*ay"   ^   ay* 
'027) 

Or,  in terms of the stresses,   the  last three terms of 

Eq,   (127)   can be written: 

where t is the thickness of the orthotropic plate, 

and the rigidities are defined by Eqs. (20), (21), 

(22), and  (32). 

Buckling due to the compressive  loads per unit 

length,  N    and N  ,  due to shear per unit length,  K    , 
x   y Xw 

and due to combined loadings will be considered here. 

4*3 Simple Supports 

The orthotropic plate with simple supports along 

all edges (Fig. 20), is first considered. The following 

paragraphs give solutions for various loading conditions. 

1. 

f 
I. - 

L 
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ty    Figure 20 
Simply Supported Plate 

4.3.1 Uniaxial Compression 

Let the plate of Figure 20 be loaded uniaxially 

by the compressive load N alone.  Then, Eq. (128) 

becomes: 

a4w Q4w 84, Qw 
* 3x4 v Vtrdy 7 ^y* ^* 

The deflected surface can be taken in the form of a 

double series, 
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■II W -     ^      >     W,   SIM   ^    SIM  »rly    • (Ma) 

But,  it is known that the  critical condition exists 

when m = 1,   n = 1, and the deformation, 

w - w. SIM n? SIM ^fy • o^o 
a b 

Substituting this into Eq. (129) and solving for the 

stress. 

0«) 

The smallest value for the critical stress is obtained 

when 

b 
and the critical buckling stress, as given by Timoshenko 

and Gere (Ref. 96), 

^ " W [^ ■" Dv] ^^ 
Lundquist and Stowell (Ref. 253) give the buckling 

stress, for the condition of Eq. (133), as 

^t- ^ [2>/qq ^D. ^yKDr + 4^] .      («s) 
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Wittrick, in Reference 107, gives an explicit 

solution to the buckling problem. Using Eq. (130) 

as the equation of the deformed plate«, he takes as 

the solution, 

L  -»      CVtOe J 

where 

k • buckling coefficient, 

(/bje ^    effective aspect ratio. 

The buckling  coefficient is of the same type as that 

used for Isotropie plates and  can be applied if the 

effective aspect ratio, 

(2.)   ^   a. 4fK    . Ow) 
is employed. 

A plot of Eq. (136) is given in Figure 21.  From 

this, the coefficient, k, is evaluated for a given 

value of (a/b) . This quantity is then substituted 

into the expression for the critical buckling load 

per unit length. 

9? 



Cüft) 

/i..3.2    Biaxial Compression 

The  plate of Figure  20 is now loaded by  compres- 

sive  loads in both directions.    Thus,  Eq.   (12?) 

becomes: 

4^ +-üvS?3yl+W^^N«^^N^-a( li^) 

For this loading condition, Wittrick (Ref. 10?) 

applies the lower curve of Figure 21, but the effective 

aspect ratio must be modified to take into account the 

load N . Thus, the effective aspect ratio used for 

this case, 

TKO) 

is first evaluated. The buckling coefficient, k, is ■ 

found from Figure 21, and the following expression is 

used to complete the analysis: 

i* 



] 

EppccTiv»  AspecT *Ajia, (o/b^ 

Figure 21 
Buckling Coefficients for Uniaxially Loaded Plates 

(from Reference 107) 
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r 

(141) 

4.3.3    Edge Shear 

When the plate shown in Figure 20 is acted upon 

by edge shears alone,  the basic equation  (127) becomes: 

^fe^l^^^Äy «   O.       042) 

Seydel (Ref. 04) also makes use of the isotropic- 

type buckling coefficient to give the expression for 

the critical shear force per unit length, 

(KS) 

The shear buckling coefficient, k_, is dependent upon 

the effective aspect ratio of Eq. (137) and upon the 

parameter D /2 VD D  , The coefficient is obtained 

from Figure 22a (which is given by Gerard and Becker 

in Reference 236), and it is substituted into Eq. (143). 

A similar result is given by Heck and Ebner (Ref. 30) 

in the form: 

] 

1 

] 

] 

] 
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(144.) 

where C    is a coefficient dependent on the parameters, 

e föVl 
& 

(ö/b)# 

C»4«) 

For ranges 

es i , 
the curves in Figure 23 apply, and C is found and s 

substituted into Eq. (144), 



O -2 4^ .6 .e> I.O 

a.)    Simply Supported Edges 

*. « 

b.)  x-Edges Clamped, y-Edges Hinged 

Figure 22 
Shear Buckling Coefficients 

] 

.1 

I 
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Figure 23 
Shear Buckling Parameter 
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k.L    Two Edges Clamped. Two Edges Simply Supported 

i i 
The rectangular orthotropic plate with two 

opposite edges clamped and the other two edges 

simply supported (Figure 24) is now considered. 

y 

sK*t.. 

% 

Figure 24 
Buckling of © - ® - © - ® Plate 

4.4.1 Clamped Edges Loaded; Others Unloaded 

When N acts, and N = N  = 0, on the plate of x y   xy 

Figure 24, Wittrick (Ref. 107) gives the solution as 

100 



•4«    bl   L       yf^  J 
(144) 

where k is the coefficient from Figure 21 for a 

particular value of (a/b) given by Eq. (137). 

4.4.2 Simply Supported Edges Loaded; Others Unloaded 

When N acts, and N = N  = 0, on the plate of y x   xy 

Figure 24, the solution of Wittrick is given in the form; 

(147) 

and k  is available from Figure 21 for the effective 

aspect ratio given by Eq. (137). 

Heck and Ebner (Ref. 30) give as the solution for 

the case of D > D 

2Tlr,^ b1- Kl-?t2o.^M 0*8) 

Lundquist and Stowell (Ref. 253) show that the 

critical buckling stress for this case is 

1^1 



^. 

II 
I 

lL^U.S54yqOr +1.2^7(^0,4.^^)+4^43(3,]  , (WW) | 
A.*! 

for the minimum condition, 

N = N = 0, is given by x   y 

a > b. 

I 

A-.4.3 Biaxial Compression ! 

When N and N act on the plat c  "^ure 24 and x y l 
N = 0, Wittrick uses the curves  o]   r .^are 21,  but xy   ' ^ 

the aspect ratio given by Eq. (140) must be applied. [ 

The solution is obtained from Eq. (141). 

] 
4.4.4 Edge Shear 

] 
As in paragraph 4.3.3, the critical shear force 

per unit length for the plate of Figure 24, when 

where the shear buckling coefficient is available 

from Figure 22b (given by Timoshenko and Woinowsky- 

Krieger in Reference (97) for plates whose edges obey 

the inequality, .1 

1 

1 



4.5 All Edges Clamped 

A plate whose four edges are clamped (Figure 25) 

is considered. 

•> X 

Figure 25 
7   Clamped Plate 

4.5.1 Uniaxial Compression 

When N is acting and N = N  = 0, the critical 
x y    Jty 

load on the plate of Figure 25 is given by Wittrick 

(Ref. 107) as 



H^-^b-^^J (•so) 

and the buckling  coefficient  is given by Figure 21 

for the effective aspect ratio, 

(f). B 4fWr 
b V D 

4.5.2 Biaxial Compression 

Timoshenko and Gere (Ref. 96) solve the problem 

of a biaxially compressed Isotropie plate with clamped 

edges, assuming the deformation function as 

w 10--*^ )0--5*Iy) (isi) 

and using strain energy to calculate the critical 

buckling stress. A similar analysis can be performed 

for the orthotropic plate. 

4.6 Other Buckling Cases 

Several other cases of loadings and edge con- 

ditions are considered in this section. 



4.6.1 Combined Shear and Compression 

Sandorff (Ref. 315) investigates the buckling of 

a plate under the action of a compressive load and 

shear (Figure 26). 

»-I —1  * w 

Figure 26 
Combined Loading 

The assumption is made that b is infinite and an 

interaction curve (Figure 27) is presented. The 

parameters of -his curve are stress ratios. That is, 

10! 
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Figure 27 
Interaction^. Shear and Compression 
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^ 
.6.2 Loaded Edges Simply Supported: Other Edges 
lamped and Free   """^ 

An implicit solution for the case shown in Figure 

28 is presented by Lundquist and Stowell (Ref. 253) 

and discussed by the writer (Ref. 309). 

© 
i i 

(§) 

© 

r** 

-l V 
y 

Figure 28 
Buckling of ^) - vC; - (S) - © Plate 

The critical buckling stress is given by: 

7 

C^* iXj [w JW, - •270(A4J7DÄ ^ Myt Dx) ^ 1.712^], (i5i) 
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for the condition 

01 

b ' '•46 

4.6.3 Three Edges Simply Supported; One Edge Free 

When the clamped edge of Figure 20 is replaced 

by a simply supported edge, the critical buckling stress 

of Eq. (154) simplifies to: 

for the same limiting condition. 

10 3 
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PART 5 - SANDWICH PUTES 

The name "sandwich plate" describes a composite 

plate which consists of two thin sheets—faces— and 

a relatively thick core. The faces are generally 

of aluminum alloy or fiberglass, while the core can be 

a light solid material such as plastic and wood or a 

thin metal sheet formed into a cellular configuration 

("honeycomb").  The basic principle of sandwich con- 

struction is the reliance upon the outer faces to 

carry end loads and upon the core to transmit shear and 

keep the faces a constant distance apart. 

Ordinarily, the modulus of elasticity of the core 

material is extremely small (about 0.1%)  in comparison 

to that of the faces. Thus, the core provides very 

little resistance to bending.  But, because its modulus 

of rigidity is also very low, the core experiences 

appreciable shearing deformations.  Thus, shearing 

deformations must be considered in the analysis. In 

addition, since the faces or the core, or both, may have 

orthogonally anisotropic stre-cbing properties, the 

composite plate may well be orthogonally anisotropic in 

its bending properties. Thus, in many cases, the theory 

1C9 



which should be used to analyze sandwich plates is 

orthotropic plate theory, with consideration cf 

shearing deformations (see Chapter 1). 

The amount of research performed in the field 

of sandwich construction is overwhelming.  For this 

reason, the bibliography of this report, pertaining 

to this area, is by no means complete.  For specialized 

and more detailed bibliographies of sandwich-plate 

literature, see References 131, 135, and 137. 

Probably the most important of the papers re- 

garding the theory of sandwich plates are those of 

Reissner (Ref. 169),Hoff (Refs. 139, 140), and Libove 

and Batdorf (Ref. 155).  Other authors who have made 

significant contributions in the investigation of the 

bending and the buckling of sandwich plates are: 

Aleksandrova (Ref. 113), Anderson (Ref. 116), Anderson 

and Updegraff (Ref. 117), Bijlaard (Ref. 120), Cheng 

(Ref. 125), Dundrova (Ref. 127), Eringen (Ref. 128), 

Goodier (Ref. 132), Guest and Solvey (Ref. 136), Hoff •       J^ 

and Mautner (Ref. 142), Hopkins and Pearson (Ref. 143), 

Horvay (Ref. 144), Hubka, Dow and Seide (Ref. 145), 

Kimel (Ref. 149), Lewis (Ref. 154), Libove and Hubka 

i: 

i: 

i: 

i; 

i: 

i; 

i: 

ii 

i: 
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(Ref.   156), March and Smith (Ref.   I6l), Mushtari 

(Ref.   163), Norris  (Ref.   164), Raville   (Ref.  168), 

Seide  (Refs.  171,  and 172), Seide and Stowell  (Ref. 

173),  Thurston  (Ref.   176), Weikel and Kobayashi (Ref. 

17Ö), Williams   (Ref.   1Ö1), Yen,  Salerno and Hoff 

(Ref.   1Ö4), Yusuff  (Refs.   190,  191),  and Zahn and 

Cheng   (Ref.  192). 

Burns  (Ref.   123)  and Burns and Skogh   (Refs.  212, 

213)   present minimum weight analyses of sandwich 

plates.    Kuenzi  (Ref.   152)  presents design criteria. 

Keer and Lazan  (Ref.   14Ö), Mindlin  (Ref.   162), and 

Yu  (Refs.  185-1Ö9)   consider dynamic behavior.    Manu- 

fi-cture of sandwich plates is discussed by Lowy and 

Jaffee  (Ref.  157).    References 126 and 170 are of 

considerable value to the designer as handbooks. 

This chapter is intended as a brief summary of 

some of the highlights of the small- and large-deflection 

theories and local and gross instability of sandwich 

plates from several of the papers listed in Section B 

of the Bibliography. 

Ill 
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5.1 Flexure 

The analysis of sandwich plates in bending 

follows essentially the same procedure as that discussed 

in Part 3.    However, as was stated previously, the 

effect of transverse shear deformations must be incor- 

porated into the analysis. 

5»1«1 Small Deflections 

Williams (Ref. 181), Hopkins and Pearson (Ref. 

143), and March (Refs. 158-161) were among the first 

investigators to ac.junt for shear deformations by 

assuming that two adjacent vertical strips r^-rain 

vertical after surface displacement, and that it is 

the shear between the strips which limits the pene- 

tration of the sinusoidal face displacement of the 

interface of core and facing. Thus, the vertical dis- 

placement of the face is taken in the form, 

^ • A, SIM '2^ , (15$) 

while the displacement of the core in the same direction 

is given by 

-fc« 

.  1 1' 



The  constant,  k,   is given by 

where 

C    = subscript referring to core, 

E« = modulus  of elasticity in  z-direction, 

(qll%= shear modulus in xz-plane, 

L   = panel length, 

w   = number of half-waves  in x-directionj 

x    = longitudinal coordinate, 

5S   = coordinate through thickness. 

More general and  rigorous treatments are given 

by Libove and Batdorf  (Ref.  155)   and Reissner (Ref. 

169).    Most of the work which follows  chronologically 

is  based on the principles cited  in these papers. 

The Libove-Batdorf paper  (see  Paragraph 1.8) 

develops a theory which applies to orthotropic or 

Isotropie plates with homogeneous  or nonhomogeneous 

cores.    The expressions derived therein are Eqs.   (45)» 

(46)  and  (47).    Assuming that N  ,   N  ,   and N     are x      y xy 

11' 
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constant throughout the plate, these equations are 

solved for the deflection and the shears: 

[D]w «.  • - [M]p. 

ID] Q. a    • - l^lf' 

[D]Q, s   • ■  IP]P- 

(»58) 

and the differential operators are defined in the 

following manner: 

1-DJ -  ZD,F -Si»    ll^ c^ h,'^ 
+ rnlp, . D.pk.''»!%y.,.'^r>.13*, 

rp,c«-^v^ ^irM^^ Kiy^4ZMm 3Lj 

X   1. T 



P'^s.-'tfi""'^ a* 

LI11 RD. g* .mfi-^-^-K .Rß.oi 

rpi. ^ .21 JPV^^liL + M. 2.' 

The elastic  constants which appear in the above 

equations are  defined by Eqs.   (20),   (21),   (22),   (38), 

(39), and  (40).    A  particular problem,  thus,  is solved 

by using Eqs.   (1$8)   for a given set of boundary con- 

ditions.    At a free y-edge: 

M, -  H*  Q. • 0. Os-O 

11: 



w -   (p -Si),   9x.   . o (I«) 

For a  clamped y-edge, with all points* free to move 

parallel to edge: 

Particular results for the bending of sandwich 

plates under uniform and concentrated loads are 

analyzed by Yen,  Gunturkun,  and Pohle  (Ref.  183).     How- 

ever,  both the core and the faces are considered 

Isotropie and,  therefore, will not be discussed here. 

*Except those in middle surface. 

n 
4t 

For a simply supported y-edge, with all points 

along boundary prevented from moving parallel to .1 

edge: 

w« MB « S « O. 0*o) 

For a simply supported y-edge, with all points free 

to move parallel to edge: 

w « MM = Mv « O . dfeO 

For a  clamped y-edge,  with movement parallel to edge 

prevented: 

i 

I 

i 

I 
•I 16 



The same is true of Kuenzi^s (Ref. 152) report on 

design criteria. 

Raville (Ref. 168) presents a study of simply 

supported rectangular sandwich plates, with Isotropie 

facings and orthotropic core, acted upon by a 

uniformly distributed load, p. The expression for 

the maximum deflection (at the center of the plate) 

is given by a double Fourier series: 

where 

(1*4) 

S  = ir'Ect.t.. 
x    ^«^ci-^Ht/O 

= ^t^ (c v ^^y 
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m,n = odd integers, 

E  = Young's modulus of facings, 

M     = Poisson's ratio of facings, 

P  = a/b, 

while a,b and the coordinate axes are consistent 

with their definitions throughout this report. 

In further refinements of small deflection 

theory. Hoff (Ref. 139) presents a variational 

approach which is also presented, in a generalized 

fashion, by Bringen (Ref. 128). Both papers are 

limited to sandwiches consisting of facings and core 

with Isotropie properties. 

Cheng (Ref. 125) considers the problem of bend- 

ing of a plate with Isotropie facings, but orthotropic 

core. The basic equation fbr bending is written: 

[»-D«Ä-D«£]A&W 

iK'-Ri-RlA^-p] 
fas) 

I 

11^ 
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in which 

Dxx' 

D - 

(\-M)  D 

Cl->C4,) D 
yy  2 k (5 vt 

D. •   D  * -^^ * 1       ^M      | - yL, 

n = thickness of core, 

t = thickness of facings, 

E= Young's modulus of facings, 

J*  = Poisson's ratio of facings. 

The homogeneous solution of Eq. (165) satisfies 

['-D«|t -D.. I".]^ =0 • (,44) 
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This form is used to solve the problem of a simply 

supported plate under a uniformly distributed load 

(Raville's solution is given elsewhere in this section). 

Since the load intensity,   p,  is constant,   the  right 

hand side of Eq.   (165)   reduces to p/D,  and its parti- 

cular solution is taken in the form: 

W, 
24 D 

A- 

(x4 - Zö** + ct*>) 

irfD   ZJ "» <* 

^0fc7) 

The maximum deflection,  at the center of the  plate, 

is then given by: 

•M.I 

W. *»•» Ot 

where 

** 

4. 
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5*1*2    Large Deflections 

Generally speaking,  the study of large deflections 

of sandwich plates is an extension,  through the 

inclusion of shear effects,  of von Karman's nonlinear 

theory of elasticity.    Such a study is quite important 

because,  sirce the advent of high strength alloy steels 

and titanium alloys,  it is possible  to construct a 

sandwich consisting of a soft core and extremely thin 

facings. 

Reissner  (Ref.   169)   considers a  plate with 

isotropic facings and core,  and uses  the  simplifying 

assumption that stresses in the core,  whose vectors lie 

in the xy-plane   (see Fig.  1),  and the variation of 

face stresses over the  thickness of the faces,   can both 

be neglected.     In other words,   the face sheets act 

as membranes,    while the core resists transverse shear 

and normal stress.     Introducing an Airy stress function, 

F,   two simultaneous differential equations are written 

to describe the behavior of an isotropic sandwich plate: 

n 



The nonlinear theory of a symmetrically loaded 

sandwich beam is considered by Zahm and Cheng in 

Reference 192, based on the assumptions that the 

exact load distribution is known and can be repre- 

sented by a Fourier series and that the core material 

is anti-plane. 

5»2 Elastic Stability 

Buckling of sandwich plates is divided here into 

two parts, local instability and general (gross) 

buckling. 

5.2.1 Local Buckling 

5.2.1.1 Face Wrinkling 

Several investigators consider local crinkling 

of the faces in a plate consisting of Isotropie 

facings and an orthotropic core. Among those who 

originated such studj.es are Williams (Ref. 181) , 

Hof f .and Mautner (Refs. 141, 142), and Goodier (Ref. 

132). A relatively simple formula for the critical 

compressive load (applied in x-direction) per unit 

1~:2 



width of panel is given by Williams: 

(172> 

where the subscript, c, denotes "core", the coordinates 

are those of Figure 1, and all other symbols are as 

defined in Part 5.1. 

Goodier and Hsu (Ref. 133) investigate face 

wrinkling in a non-sinusoidal mode and derive a lower 

critical load. Yusuff (Refs. 190, 191) considers 

initial imperfections and, for the plate shown in 

Figure 29, derives equations for critical stress, based 

on local wrinkling, of a plate with Isotropie faces 

and core. 
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Figure 29 

Wrinkling of Facing 

W is the "zone of    displacement", 

(17») 

For a failure of the core by tension or compression, 

the critical stress, 
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For core failure due to shear, 

*<* 
.<te ypE.^. 
14. US.. A. 

(17*) 

The ratio, A^, is known as the "waviness parameter" 

and is given in Figure 30. The curve given in this 

figure has been confirmed by various tests, among 

them those of Harris and Crisman (Ref. 138). 
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Figure 30 

Wavlness Parameter versus Core Moduli 

5>2.1.2 Intracellular Bucklinjg 

A second form of local instability is that of 

"dimpling" or intracellular buckling. This failure, of 

course, is dependent upon' the core configuration. 

Anderson and Updegraff (Ref. 117) investigated 

the buckling of truss-core sandwich panels experimentally. 
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where G   Is the shear modulus of the core and the 

definitions of all other    terms are given in Eq. 

(165). 

These equations (127 and 12Ö), together with the 

boundary conditions, determine the functions F and w. 

For the solution of such differential equations, the 

reader should refer to page 425 of Reference 96. 

The large deflections of a sandwich plate with 

orthotropic core between Isotropie face sheets are 

considered by Aiwan (Refs. 114, 115). Here, the 

solution is given by two differential equations, the 

first of which is Eq. (169) and the second. 

3x^y trty       On* ^y1 J ' 
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Writing the critical buckling stress of the faces in 

the intracellular mode, 
i 

, 
• 

(»7M 

where the symbols are defined in Figure 31 and in 

Part 5.1. The values of the buckling coefficient, k, 

are given in Figure 32. 

.1 

.1 

t 

Figure 31 

Truss-Core Sandwich 
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Figure 32 

Truss-Core Buckling Coefficient 

A design curve, for honecombs, based on intra- 

cellular buckling, is given on page C12.8 of Reference 

122. When uniaxial compression is applied in the 

direction of the ribbon, 

S» » .75E (if 
where ^ is the plasticity reduction factor, 

im) 

2E. 
E ♦ ET 

and Em is the tangent modulus of the facings. The 

geometry of the honeycomb is given in Figure 33» 
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Figure 33 

Honeycomb 

5.2,1.3    Shear Crimping 

The third form of local instability is excessive 

transverse shear stress (shear crimping).    Such a 

failure may occur when the sandwich panel is not 

initially perfectly flat. 
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The problem is considered by Boiler and Norris 

(Ref. 121) and Bruhn (Ref. 122). The latter gives 

the design equation, 

ft)' 
(»7«) 

with terms defined in the same manner as those of 

Eq. (177). 

5.2.2 General Buckling 

The general buckling of sandwich plates has been 

investigated by several authors for many types of end 

conditions and loadings. 

5.2.2.1 Simply Supported Edges 
■ 

Buckling of simply supported sandwich plates Is 

discussed by Gerard and Becker (Ref. 236), Hoff 

(Refs. 139, 140), Kimel (Ref. 149), March and Smith 

(Ref. 161), and Seide and Stowell (Ref. 173). 
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For the Isotropie sandwich plate In unlaxlal    ., 

compression! the formula for the critical buckling 

stress is given by Hoff: 

<£. - CF (C '<• OrO 

C^ is the buckling stress of the unconnected 

faces, 

0*» ■     — — > 'eft 3(I-^L 

11) 

III 

III 
(11 

!     1 
F is the form factor, 

I + 3 («♦*)'. 

and C is a reduction factor for the buckling of the 

composite panel. Its values are given by the curve 

in Figure 34» for various parameters, 

in. 

F< 
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Figure 34 

Reduction Factor - Simple  Supports 

loo 

Kimel, in Reference 149, performs a theoretical 

analysis of the simply supported plate under the 

combination of edgewise bending and compression on 

opposite edges. The sandwich considered is made up 

of Isotropie facings and an orthotropic core. The 

results of this analysis are quite lengthy and will not 

be presented here. 
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I 
A uniaxially compressed sandwich with an 

orthotropic core is discussed by March and Smith 

(Ref. 161).    With the load applied along the a-edges, 

the critical buckling load, 

06o) 

where 

n 
-(H 

»-"^"r. 
«M«     . 

(^0 

n      = number of half-waves in x-direction. 

IJ^ 



A family of curves, for various values of n, must 

be constructed in order to make Eq. (180) suitable 

for design. 

3.2«2.2 Loaded Edges Pinned. Other Clamped 

This case is considered by Yen, Salerno, and 

Hoff (Ref. 104). A close approximation to the true 

value of the buckling load is obtained by establishing 

a lower bound by Leggettfs method and "n upper bound 

by Galerki^s approach. The derived expressions are 

extremely complex, but a diagram, well suited for 

design, is presented. 

A Metalite sandwich (Isotropie facings, ortho- 

tropic core) is studied by Seide (Ref. 171). In this 

paper, the flexural rigidity of the faces is neglected, 

thus underestimating the shear stiffness of the core 

(discussed by Bijlaard in Reference 120). Using a 

combined result of Seide and Bijlaard (modification 

of former's method by including face rigidities), the 

critical buckling load along the pinned edges, 

1-w; 
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(N.\.. K.?T^[|^+1 C»ÄO 

where 

K,  = buckling coefficient from Figure 35, 

»2   = plasticity factor (see 5.2.1.2), 

^     Et (Vi + tf 

4    = e<  

and all other terms are those used with consistency 

throughout this paper. 

March and Smith (Ref. 161) take the x-edges as 

loaded and simply supported and derive the expression 

for the critical buckling load of a sandwich with an 

orthotropic core as: 

I 
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where all terms are defined in Eq. (180). 

5.2.2.3 Loaded Edges Clamped. Others Pinned 

The solution to the problem of the x-edges 

loaded and clamped and the y-edges simply supported is 

given by March and Smith (Ref. 161) for the sandwich 

with an orthotropic core: 

6tD 

177 



I 

I 

where i for one half-wave, 

^•SW|-"f-il-'Ä] 
for two half-waves, 

for three half-waves, 

for four half-waves, 

and all terms are defined in Eq. (1Ö0). 

5*2.2.4 All Edges Clamped 

March and Smith (Ref. 161) solve the problem 

of the clamped sandwich plate with Isotropie facings 

1'B 
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and orthotropic core.    The critical buckling load 

along ^v-c x-edge, 

(isn . k    'LZBB    , (••♦> 

in which the buckling coefficient for one half-wave, 

1^        " HH^ißr^]' 
for two half-waves, 

^-•£Hf./|-»^l-H 
for three half-waves, 

*-J['£/|-"!:/|-H 
for four half-waves, 

K-SHH^HJi^^] 
and all terms are defined in Eq.   (1Ö0). 
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Figure 35 

Buckling Coefficients for Eq. (iSl)-«. /W- 1/} 
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This problem is also solved by Thurston 

(Ref. 176). The buckling load is given by: 

M 

in which K* is a buckling coefficient given by 

Figure 36. In the Figure, S is the sandwich 

parameter, 

(!•») 

«* 5,, v> 

where 
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Buckling Coefficients for Eq. (185) 

5 »3 Summary 

Only the most common cases of loading and end 

supports have been considered in this chapter. For 

other combinations of end conditions and loads, the 

reader is advised to search the titles of Section B 

of the Bibliography. 
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PART 6 - CORRUGATED PLATES 

Corrugated plates were first Introduced as a mode 

of construction In England In the late 1920*8. Their 

first use was in the form of tank and sub-division 

bulkheads In ships. Corrugated sheet steel was later 

used in the construction of aircraft wings and fuse- 

lages. In recent years, corrugated sheet attached to 

a flat plate (generally called "corrugation-stiffened 

panel") has been used in the forming of skin of high- 

speed flight vehicles such as the X-15. A more recent 

advance has been the adoption of corrugated plate for 

use as core in an all-metal sandwich. 

6.1 Flexure 

The flexure of corrugated plates of various 

configurations has been discussed by several authors. 

Among these, the following are the most prominent: 

Andreeva (Ref. 193), Caldwell (Refs. 196, 197), 

Shibuya (Ref. 205), Stroud (Ref. 335), Platus and 

Uchiyama (Ref. 204), Bergman and Reissner (Ref. 195), 

and Timoshenko and Woinowsky-Krieger (Ref. 97). 

The discussion which follows is divided into two 

parts. First, a single corrugated plate is considered, 

and, second, a built-up configuration of corrugated 
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and flat plates Is discussed. 

6.1.1 Single Sheets 

The bending of single corrugated sheet is taken 

up by Timoshenko and Woinowsky-Krieger (Ref. 97). 

For a sinusoidal configuration (Fig. 37), given by 

the orthotropic constants are: 

D - t -^ , 

Dy - EX . 

r^      *     Be 

in which 
«2(H-iüft 

017) 

E = modulus of elasticity of material, 

Al = Poisson's ratio of material, 

s = arc length of half-wave. 

n 

i i 

Figure 37 
Sinusoidal Corrugation 
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From the geometry, the arc length and the moment of 

inertia are approximately given by 

s • 

1    u^iH 

(»-»o 

0-u) 

The orthotropic plate theory,  discussed in Part 3, is 

than applied for the solution of a particular bending 

problem. 

Corrugations  of a different geometry (Fig.  30) 

are considered by Caldwell  (Ref.   196).    The author 

takes into account the effect of inelastic behavior. 

hb-| 

Figure 30 
"Hat-type" Corrugation 
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Experiments show that elastic stresses and deformations 

can be calculated from ordinary bending theory using 

a moment of inertia, 

I   -    —^    (3b+ c)   , (W 

and a section modulus, 

2 .  ±ä (Bt+c) 0«»4) 

Assuming that the strains are large,  the ultimate 

bending strength of the panel is given by: 

M ytr. y (z\,*c)^, 

where  o^ is the yield strength of the material. 

6.1.2    Built-up Panels       N 

Stroud  (Ref. 335) calculates the elastic con- 

stants of a corrugated plate attached on one side 

to a flat plate  (Fig. 39). 

(H^ 

146 



MfUTKAt 
AXIS 

- WCiO  LtMft« 

 1 
%■ 

Figure 39 
Corrugation-Stiffened Plate 

The differential equation of this orthotropic plate 

is written in a form slightly different from that of 

Eq.   (31): 

D,  is the bending stiffness in a direction parallel 

to the troughs  ("into the paper" Fig.  39), 
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and, with E being the modulus of elasticity of the 

material,  its value is: 

q. 2^[<^ ♦ (y-yn-w)*,. <«igt! 

- (I*?!) 

in which the location of the neutral axis is given by 

y.  

The bending stiffness in a direction normal to the 

trough axis, 

Dx- 
01.U (•18) 

D; ^ 
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where 

D   nisi    !    - • 

~2nC*Qco*€>   -4   Zn^ftiud 

* ?i C3© - "* «»-o "»•© - 2Q »»Te ) 4- g^1- 

The twisting stiffness, with G being the shear modulus 

of the material, 
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The bending moments are evaluated by substituting the 

above values (in which >« is the Poisson's ratio of the 

material) into 

M. 

M . - p*   r "§* +11 ^l 

Ky 
O^ W 

'»K'Sy 

'(zoo) 

The same problem is considered by Wempner and 

McKinley (Ref.  1Ö0) and similar results are derived 

for plates connected by one weld-line  (a = 0 in Fig.  39). 

6.2    Elastic Stabilitv 

The buckling of corrugated plates has been studied 

by various investigators.    Among these are Andreeva 

(Ref.  193), Ashwell  (Ref.  194), Libove and Hubka 

(Ref.  156), Plaineveaux (Ref. 203), Stroud  (Ref. 326), 

Seydel  (Ref. 04),  Timoshenko and Gere  (Ref.  96), Wempner 
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and McKinley (Ref. 1Ö0), and Dean (Ref. 19Ö). 

This portion will again be divided into two 

phases: the first dealing with single corrugated 

sheets and the second with panels consisting of flat 

plates attached to corrugated sheets. 

6.2.1 Single Sheets 

Since consideration of bending requirements alone 

"^        would dictate the design of a ^hin plate with deep 

troughs, it is necessary to consider limitations im- 

-1        posed upon such a design by local instability of the 

component "walls". Caldwell (Ref. 196) discusses this 

problem, taking into account the interaction between 

webs and flanges and referring all symbols to the con- 

figuration of Figure 30. 

The critical buckling stress, based on local 

instability (and, thus, independent of panel length 

and edge supports), is given by: 

D 
tc 

where D is a material property, EfyLSd-yU ), and K 

is a constant dependent upon the dimensions of the 

corrugation (see Figure 36 and 40). 
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Timoshenko and Gere (Ref.  96) discuss the work 

of Bergmann and Reissner (Ref.  19$) and Seydel (Ref.  04) 

for the critical buckling shear load,  and give the 

expression: 

<7ol) 

: 

I 

■; 

. i 

where C is the buckling coefficient given in Figure 23. 
s 

The equation (202) is that given in paragraph 4.3.3 and 

all definitions are given there. 
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Figure 40 
Buckling Coefficient of Eq.   (201) 
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6.2,2 Built-up Panels 

The formulas derived by Stroud (Ref. 335) can be 

extended to the buckling case be rewriting the differ- 

ential equation (196) such that it includes edge 

loadings: 

Thus, if the orthotropic constants defined by Eqs. 

(197), (19Ö), and (199) are substituted into Eq. (203), 

the solutions given in Part 4 can be applied to par- 

ticular problems. 

This problem is also discussed by Wempner and 

McKinley (Ref. 1Ö0) and theoretical results are com- 

pared with experimental data. 

6.3 Summary 

The increase in load-carrying ability accomplished 

by constructing corrugations parallel to the loading 

and the high flexural rigidity of corrugated plates are 

well recognized.    However,  plates of this type have 

several disadvantages:    a)    i.e.  strength is increased 
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in one direction, while it is decreased in the direction 

normal to it; b) weight per unit projected area is 

greater than that for flat plates; c) workability of 

corrugated sheet is limited. 

For these reasons, various investigators have 

explored other configurations which can be formed as 

easily as corrugations. Smith and Gray (Ref. 320) 

discuss a method for redistributing metal in flat 

sheets for the purpose of obtaining maximum strength- 

weight ratios and rigidity-weight ratios. Farmer and 

Spangler (Ref. 308) investigate a pattern of "calottes", 

or hemispheres, pressed into a flat sheet in a random 

pattern. This writer (Ref. 309) and Tewes (Ref. 321) 

present a study of plates stiffened by "dimples" 

(L-shaped depressions pressed into the sheet in an 

interlocking manner). "Waffle beading", forming of 

intersecting sinusoidally shaped beads in a sheet 

metal panel, is discussed by Rogge in Reference 314. 
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PART 7 - RIB-REINFORCED PLATES 

The bending and buckling of flat plates stiffened 

by longitudinal or transverse ribs, or both, is a 

subject which has received much attention in the 

literature.  Early studies were concerred with multi- 

piece skin-and-stiffener combinations, while more 

recent investigations are generally confined to in- 

tegrally-stiffened structures.  Both types are con- 

sidered in this chapter. 

7.1 Flexure 

Among the many investigators concerned with the 

bending of rib-stiffened plates are the following: 

Borcz  (Ref.  326),  Chapman and Slatford (Ref.  217), 

Floor and Burgerhout (Ref.  233), Giencke  (Refs.  237- 

239), Giuliani  (Ref. 240), Holmes  (Ref. 244), Huber 

(Ref.  40), Jaeger and Hendry  (Ref.  246),  Lekhnitsky 

(Ref.   50), Richart, Nevmiark and Siess  (Ref. 26Ö), 

Schade  (Refs.  273-276), Schumann  (Refs. 27Ö, 279), 

Terazawa and Tarada (Ref.  2ÖÖ),  Timoshenko and 

Woinowsky-Krieger (Ref.  97),  Tolotti and Grioli 

(Ref.  290),  and Yamaki  (Ref,  298). 
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The bending of orthogonally stiffened plates 

(to which this study is limited) can be analyzed by 

means of orthotropic plate theory, as described in 

Parts 1 and 2. The elastic constants of the govern- 

ing differential equation (31) must be determined 

experimentally, according to the methods outlined in 

the following chapter. Then, deformations, stresses, 

etc., can be evaluated. Orthotropic constants for 

several cases of stiffening are discussed here. 

Lekhnitsky (Ref. 50) considers a plate with 

equally spaced one-directional stiffeners symmetrical 

with respect to the midplane of the plate (Figure 4l). 

■♦•x 

U L.—U 1.-1 

Figure 41 
Stiffened Plate Governed by Eqs. (204) 
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The constants of the characteristic equation (31) are: 

% • v* E.t* 
*»   12 O-Jf) 

D - Jill . E^v^ , 
>(&*) 

y   »2 (l->|«)        L, 

where subscripts p and s refer to properties of plate 

and stiffener, respectively. 

If the plate of Figure 41 is now reinforced by 

another set of equal stiffeners in the y-direction, 

a distance L apart, 

D » 

(ZOfc) 

where 

Ef>Et «  moduli of elasticity of plate and 
stiffeners, respectively, 

M Poisson's ratio of plate material, 

(l) e  moment of inertia of one stiffener, 
■ *   parallel to x-axis. 

(Iy) ■  moment of inertia of one stiffener, 
"   parallel to y-axis. 
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The constants for a plate integrally reinforced 

by equal and equidistant ribs are derived by Pflügger 

(Ref. 264) and Timoshenko and Woinowsky-Krieger 

(Ref. 97). The latter give the following expressions 

for the plate shown in Figure 42: 

II 

1 ill ÜJ 

Figure 42 
Integrally Stiffened Plates Governed by Eqs.   (206) 
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where 

i, 

m 

moment of inertia of one T-secti(Jn 
of width L , 

torsional rigidity of one rib, 

torsional rigidity of plate without 
ribs, 

In addition to solutions which make use of 

orthotropic theory, in which the interaction between 

plate and stiffener is generally neglected, several 

writers presented more sophisticated direct methods of 

attack. 

One of the early investigators, Schade (Ref. 276), 

considers a rectangular plate with longitudinal and 

transverse stiffeners, and with the two y-edges clamped 

and the x-edges free, acted upon by a uniformly distri- 

buted load, p (Figure 43). 
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The deformation expression, taken as a single 

series, has the form: 

VI 

[♦•MM * (a- X) Co»^)l > TJ Cosviet 

1 

(a-X^SiM^ei 

Oil   ; 
V                                         1 

where 

(zo?; 

-*••« ^ g—  equivalent moment of inertia 
of longitudinal stiffener, 

ä-I ■ l*g!: ^^^ » average unit moment of inertia 

of plate alone, 

I* * moment of inertia of longitudinal 
stiffener and effective skin, 

ly • moment of inertia of transverse 
stiffener and effective skin, 

I», a moment of inertia of central 
longitudinal stiffener and effective 
skin. 

>»... *  ±r    -z 

alone. 

unit moment of inertia of plate 

.oC 



® ^    r 
»« 

i 

V 
•r.rf^M 

- sr 
_                            Ä 

i 

II 

•-1 

Figure 43 
Stiffened Plate Governed by Eq. (20?) 

A numerical procedure for the direct calculation 

of stresses is presented by Kempner (Ref. 248). Holmes 

(Ref. 244) discusses the effect of shear lag upon the 

bending of stiffened plates. 
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7.2    Elastic Stability j[ 

a« y 

^"fe ^S-fe/^^ "0^ 

! 

The problem of buckling of stiffened plates is r 

extremely important to the designers of aircraft 

because of the rigid requirement of aerodynamic 

smoothness of wing surfaces. For this reason, this 

area has been investigated by a great number of 

researchers. Among the more important contributors 

are the following: Burns and Skogh (Ref. 212), 

Caldwell (Ref. 214), Dow, Hickman and Rosen (Ref. 22Ö), 

Gerard (Refs. 234, 235), Gerard and Becker (Ref. 236), 

Irving and Mullineux (Ref. 245), Klitchieff (Ref. 250), 

Nowacki (Ref. 262), Pflüger (Ref. 264), Pochop (Ref. 266), 

Radok (Ref. 267), Rockey and Cook (Refs. 269, 270), 

Rosenhaupt (Ref. 271), Seide (Ref. 2Ö0), Seydel (Ref. 282), 

Sokolowski (Ref. 284), Strasser (Ref. 285), Timoshenko 

(Ref. 289), Timoshenko and Gere (Ref. 96), Tsuiji 

(Ref. 291), Wang and Zuckerberg (Ref. 294), and Yusuff 

(Ref. 300). 

When orthotropic theory applies, the deflections 

of the stiffened plate are governed by Eq. (127): 

pk "^w 4. or» '34* A. r» ^*w 

162 



n 

i 

i 

J 

and the values of the constants D . D , and D  are x  y      xy 
given by Eqs. (204) or (20$) or (206) or can be de- 

termined by experimental means, using methods outlined 

In the next part. The expressions derived In Part 4 

can then be used to solve particular problems. 

A very high percentage of papers dealing with this 

area are experimental In nature, and, thus, solutions 

are generally given In the forms of curves. The ex- 

tremely large amount of information available renders 

Impossible a summary of basic expressions and data in 

this report. Since the literature contains data on 

many different configurations of stiffened panels, it 

is impossible to present a concise guide here. 

For this reason, the analyst is referred to the 

bibliography of this paper. The titles of most papers 

adequately describe the specialized topics with which 

they deal. For excellent summaries. Handbook of 

Structural Stability. Parts V and VII (Refs. 235 and 

t \ 236), are particularly recommended. Bruhn's well- 

known reference (Ref. 122) also contains a great deal 

of information dealing with the buckling of stiffened 

1 panels. 
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7.3 Summary 

The flat plate reinforced by either longitudinal 

or transverse stringers, or both, remains an extremely 

important problem in the design of ships, flight 

vehicles, and bridges.  Only the static behavior has 

been discussed here. However, there are several in- 

vestigators who have also concerned themselves with the 

dynamic problem. Among these are: Feldman (Ref. 232), 

Greenspon (Ref. 23), and McElman, Mikulas and Stein 

(Ref. 2$6). 
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PART Ö - DETERMINATION OF ELASTIC CONSTANTS 

In the previous chapters, use is made of ortho- 

tropic plate theory to solve various bending and 

buckling problems.  In order that this theory may be 

applied, it is first necessary to determine the various 

elastic constants of orthotropy.  Let us review the 

characteristic differential equation for a general 

loading: 

w 

In this expression, the shear deformation effects are 

neglected. Since such a simplification is permissible 

in many cases, the determination of the three constants, 

D , D , and D  , will first be considered. 

In the more refined case, where shear deformations 

are accounted for (see Paragraph 1.Ö) three additional 

constants must be evaluated. The methods of evaluation 

of all of these values are discussed in this part. 

Ö.1 Bending Stiffness 

The original scheme for measuring the bending 

stiffness of orthotropic plates is given by 
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Bergstrasser (Ref. 325). The same method is then 

discussed by Thielemann in 1945, and later by Hearmon 

and Adams (Ref. 29), Hoppmann et al (Refs. 329-332), 

and Tsai and Springer (Ref. 338). 

First, the relationship between stresses and 

strains, Eq. (3), is recalled: 

J-ri 

S„ 

'Zl 

\z 

'IX 

t *y 
Since S-.^ = ^21' t^ere are ^0^r  elastic constants to 

be determined in the case where shearing deformations 

are neglected. 

For the determination of the bending constants: 

11 
1 
IT ' x 22 

_ 1 
ET ' 
y 

S12 " S21 
y    x 

the plate is oriented and supported as shown in Figure 

44. 
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Figure 44 
Test for Bending Stiffness  (I) 

Thus, a uniformly distributed bending moment, Mx, is 

applied to the plate. Therefore, the deformation at 

any point  (x,  y), 

w.   6H. (5iiX- <. S|ty») + A* + By * C - 
1» 

Czos) 

where A, B, and C are constants. The moment in terms 

of the total applied load, P, 
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From this, the deflection, 

w- I? (l - t)(5"xl + s«y,;) * ^- * By +c .  (2.0) 

It is now necessary to make two deflection measurements 

in order to evaluate the constants S,, and S12. These 

two measurements are at 

x = 0, y = 0, 

x = 0, y = |. 

It is known that the deflection is zero at the supports, 

given by the coordinates: 

x = _ a 1,7=0. 
a      a x - T- y - i> 
a      a x = -?• y - -I- 
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The evaluation of Eq. (210) for these five conditions 

gives five equations and five unknowns (S^, S..«, 

A, B, C) which are then solved. 

The same procedure is followed for thi deter- 

mination of S22 and S21, and, thus, the values of 

the Youngfs moduli, E and E , and the Poisson-type x y 
constants, M     and M    ,  are known.    Thus, the ortho- xy yx 
tropic stiffnesses,  from Eqs.   (20)  and  (21), 

D    .     ti£ . 

Another scheme for determining the bending rigidity 

is presented by Stroud  (Ref.  335)  and slightly 

modified by this writer in an unpublished report. 

The rectangular plate is loaded such that the region 

between supports is in pure bending  (Figure 45). 
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Figure 45 
Test for Bending Stiffness (II) 

For the shape of the deflected curve, 

W «    kxx . (210 

Differentiating, 

Thus, the bending moment,  from Eq.   (17), 

The radius of curvature between points i and j is 

found from the geometry: 
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r- Jr-.   - - • 4Cwj-w^*el> •        ft'») 
(3>)   Zk    4 (WJ - w,) 

Substituting Eq. (213) into Eq. (212), writing the 

moment in terms of the load, and solving for the 

stiffness: 

The same procedure is followed for D . 

8.2 Twisting Stiffness 

The loading condition required for the deter- 

mination of the twist term, D  , is that of uniformly 

distributed edge twisting couples. This is accomplished 

rather simply through the set-up shown in Figure 46, 

which is described by several writers, among them 

Timoshenko and Woinowsky-Krieger (Ref. 97) i Hoppman 

et al (Refs. 329-332, 340), Adams (Ref. 29), Stroud 

(Ref. 335), and Tsai and Springer (Ref. 33Ö). 

As is illustrated in Figure 46, a square plate 

is subjected to concentrated loading at one pair of 

diagonally opposed corners and supported by point 
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supports  (perhaps ball bearings) at the other two 

comers. 

0    POIMT   SUPPORT 

O      POtHT    LOAP 

•• X 

Figure 46 
Test for Twisting Stiffness 

The theory given by Timoshenko and Woinowsky-Krieger 

(Ref. 97) shows that the concentrated loads, P/2, 

acting at each of the unsupported corners, produce a 

torsional moment, M , per unit length along each side xy 

of 

M 
P 
4 

(215) 
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C«*) 

The deformation is given by 

W-      -7^   S44xy   ^   Ax   +   By   +   C 

-     Ip    S^ Ky  +   Ax   +   By   ^   C . 

Since the supports are at the same height and the 

deflection at the supports is zero (w = 0), the con- 

stants A, B, C can be determined. Only one measure- 

ment , at 

x = 0, y = 0 

is required to solve Eq.   (216) for S^.    Finally, 

the relationships, 

are used to find the twisting stiffness. 

The same testing procedure can be used for a more 

direct method of calculation.    Since the edges of the 

twisted plate are straight,  the plate is in a condition 

of pure twist with no shears Q   and Q    present.    Thus, x    y 

if the deflection, 5, of one of the unsupported corners 

(a/2, -a/2) or (-a/2, a/2) is measured, its relationship 

to the twist is given by the simple relationship, 

-i^L . Lf . U17) 

17 J 



. 

From Eq.   (19), the torsional rigidity, 

D . ^ - -J^r  . 

From this and Eqs. (217) and (215), 

This is substituted into 

D7 = %^ 5 (/'.,p. ^r»0,) 

to get the torsional stiffness. 

Great care must be exercised in performing the 

twist tests. It must be remembered that the edges are 

to be kept straight. In testing patterns such as 

corrugations or dimples, care must be taken to allow 

each cell of the edge cross-section in the xz- and 

yz- planes to rotate the same amount. The satisfaction 

of these two requirements may require stiffening of the 

edges in such a way that the torsional rigidity of the 

stiffeners is very low while their bending rigidity is 

high (thin plates), and perhaps filling the edge cells 
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1 
in such a way that they can be attached to the 

stiffeners. 

Becker and Gerard  (Ref. 323)  suggest a somewhat 

different experimental technique in that a canti- 

levered plate is twisted.    But,  of course,  the twisted 

plate has the same shape as that discussed above and 

the method of calculating the constant is the same. 

Ö.3    Shear Stiffness 

When the shear deformations of the orthotropic 

plate are accounted for  (Paragraph 1.8),  the shear 

stiffnesses, D      and D     , must be determined.    Libove 
x ^y 

and Batdorf (Ref.  155)  and Libove and Hubka (Ref.  156) 

discuss a method for this calculation. 

The transverse shear stiffness, D.  ,  is found by 
x 

loading the plate as a beam by a uniformly distributed 

load  (Fig. 47). 
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Figure 47 
Test for Shear Stiffness 

The bending moment at any point, 

The rate of change of transverse shear, 

^   - -   4 (2ZO) 

■• 



The curvature , ^"A is determined from deflection 

measurements along the x-axis. Then, the shear stiff- 

ness is found from: 

a* 
(221) 

a1*/     '   /es? I pxx\ 

The shear stiffness, D    ,  is obviously determined 

in the same manner. 
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VERSE   LOADING*   AND   THE   ANALOGY   WITH  BEAMS   ON  AN  ELASTIC   LAYER*      WISSENSCHAFT- 
LICHE   GESELLSCHAFT   FUR   LUFT-   UND   RAUMFAHRT«   EUROPAISCHER  LUFTFAHRTKONGRESS* 
6TH«   MUNICH*    SEPT   1965 

75. RAJAPPA*N«R*      »ON   THE   BENDING   OF   RECTANGULAR  ORTHOTROPIC  PLATES  WITH  SMALL 
INITIAL   CURVATURE*      JOURNAL   OF   THE   WOYAL   AERONAUTICAL   SOCIETY«   V0L«66«   NO.640« 
P*280«   APR   1964 

74. RAJAPPA«N«R«      *ON   THE   DEFLECTION   OF   RECTANGULAR   ORTHOTROPIC   PLATES   UNDER  LATERAL 
LOADS*      JOURNAL   OF   THE  ROYAL   AERONAUTICAL   SOCIETY«   VOL«68*   NO«643«    P.483«   JULY 
1184 

77. RAJAPPA«N.R«   +   D.V.REDDY«      «ANALYSIS   OF   AN   ORTHOTROPIC   PLATE   BY   MACLAURIN'S 
SERIES*     JOURNAL   OF   THE  ROYAL   AERONAUTICAL   SOCIETY«   VOL.67«   P.126«   FEB   1963 

78. RE ISSNER *E.      »ON   THE   THEORY  OF   BENDING  OF   ELASTIC  PLATES*     JOURNAL   OF  MATHE- 
MATICS   AND   PHYSICS«    VOL«23«   P.184«    1944 

71. RC3INS0N«J.R.      «THE   BUCKLING   AND  BENDING  OF   ORTHOTROPIC  SANDWICH  PANELS  ¥ITH  ALL 
EOC2S   SI4PLY   SUPPORTED*     AERONAUTICAL  QUARTERLY«   V0L«6«   NO.2«   P.125«    1955 

fe. SARKISIAN«V.S.   +   L.A.MOVSISIAN«      «METHOD  FOR DETERMINING CRITICAL   LOADS  OF 
ANISOTROPIC   PLATES*    (RUSS)       INZHENERSKYI    ZHURNAL«   VOL.5«   NO.4«   P.777«    1965 

g,,   SAWCZUK.A.      «ON   THE   THEORY  OF   ANISOTROPIC   PLASTIC  PLATES  AND   SHELLS«     ARCHIVUM 
MECHANIKI   STOSOWANEJ«   VOL«13«   N0.3«   P.355«    1961 

*t. SAWCZUK«A.      «SOME   PROBLEMS   OF   LOAD-CARRYING  CAPACITIES  OF  ORTHOTROPIC  AND NON- 
HOMOGENEOUS  PLATE*«      ARCHIVUM  MECHANIKI   STOSOWANEJ«   VOL.8«   N0.4«   P.549*    1956 

«i. SCHJLTZ«H.G.      «LOAD-CARRYING   CAPACITY  OF   ORTHOTROPIC   PLATES  LOAOCD    IN  COMPRES- 
SION«   (GER)      STAHLBAU«   V0L«33«   N0.4«   P.123«   APR   1964 

84. SEYDEL*E«      «ON   THE   BUCKLING  OF   RECTANGULAR   ISOTROPIC   OR  ORTHOGONALLY   ANISO- 
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TROPIC PLATES UNDER COMPRESSIVE STRESS» (6ER)  INGENIEUR-ARCHIV* V0L*4t P«169« 
1933 

«5. SHOW-WENtY. ♦ H«KEH-CHIH«  «AN APPROXIMATE THEORY OF ELASTIC ORTHOTROPIC PLATES 
WITH TRANSVERSE SHEAR DEFORMATIONS« (CHINESE)  ACTA MECHANICA SINICAt V0L«6« 
N0.4« DEC 1963 

«6.SHULESHK0*P«  «A REDUCTION METHOD FOR BUCKLING PROBLEMS OF ORTHOTROPIC PLATES* 
AERONAUTICS QUARTERLY« V0L«6« PART 2« P.MS» MAY 1957 

g7 sMITHtC.B»  «SOME NEW TYPES OF ORTHOTROPIC PLATES LAMINATED OF ORTHOTROPIC 
MATERIALS*  JOURNAL OF APPLIED MECHANICS« VOL.20« MO.2. P.2S6« JUNE 19S3 

66. SOKOLNIKOFF« I.S.  «APPROXIMATE METHODS OF SOLUTION OF TWO-DIMENSIONAL PROBLEMS 
TN AN ISOTROP IC ELASTICITY«  PROCEEDINGS OF THE 3RD SYMPOSIUM IN APPLIED 
MATHEMATICS OF THE AMERICAN MATHEMATICAL SOCIETY« 1949 

6<). SOLECKI«R.  «GENERAL SOLUTION FOR A THIN ORTHOTROPIC RECTANGULAR PLATE« 
BULLETIN OE L•ACAOEM1A POLONAISE DES SCIENCES«WARSAW« VOL.8« NO.«« P.399« I960 

«To. SOPER«W.G.  «LARGE DEFLECTION OF STIFFENED PLATES«  JOURNAL OF APPLIED MECHANICS 
VOL.25« NO.4« P.4*4« DEC 1956 

qi. sUCrlAR«M.  «COMPUTATION BY MEANS OF POLYNOMIALS OF INFLUENCE SURFACES FOR 
AMSOTROPIC PLATES WITH FINITE DIMENSIONS«  ARCHIVUM MECHANIKI STOSOWANEJ« VOL. 
10« NO.5« P.61S« 1958 

«U. SUCHAR«M.  «GENERAL FORM OF THE SURFACE OF DEFLECTION OF A THIN ANISOTROPIC 
PLATE IN A MULTICONNECTED REGION«  BULLETIN DE LtACADEMIA POLONAISE DES 
S:iENCES«WARSAW« VOL.6« NO.2« P.69« 1960 

«„. SUCHAR«M.  «OW SINGULAR SOLUTIONS IN THE THEORY OF ANISOTROPIC PLATES«  BULLETIN 
DE L'ACADEMIE POLONAISE DES SCIENCES.WARSAW« VOL.12« NO*1• 1964 

CJ4 TARAPORrwALLAtK.J.  «DESIGN OF GRID AND DIAGRlD SYSTEMS ON THE ANALOGY OF 
DESIGN OF PLATES«  STRUCTURAL ENGINEER« VOL.36« NO.4« P.121« APR 1986 

<(S. THIELEMANN«W.  «BUCKLING OF ANISOTROPIC PLATE STRIPS« (GER) , DEUTSCHE VERSUCH- 
1 5ANSTALT LUFTFAHRT« REPT. 16« JUNE 1956 

%.TlMOSHENKO«S. +   J.M.GERE«  «THEORY OF ELASTIC STABILITY«  NEW YORK/MC GRAW-HILL* 
P.403« 1961 

(tf. TIM0SHENK0«S. + S.WOINOWSKY-KRIEGER«  «THEORY OF PLATES AND SMELLS«  NEW YORK/ 
MC GRAW-HILL« P.364« 1959 

cn.TOPFER«H.-J.  «UNIQUENESS AND PRACTICAL CALCULATION OF SOLUTIONS OF BOUNDARY- 
VALUE PROBLEMS IN THE THEORY OF ORTHOGONALLY ANISOTROPIC PLATES« (GER)  ZEIT- 
SCHRIFT FUR ANGEWANOTE MATHEMATIK UNO MECHANIK« VOL.42« NO.4/5« APR/MAY 1962 

qo|.TK2NKS«K.  «CONTRIBUTION TO THE CALCULATION OF ORTHOGONAL ANISOTROPIC RECT- 
AN(JLAR PLATES« (GER)  BAUINGENIEUR« VOL.29« NO.10« P.372« 1954 

loo. TROMBSKI«M.  «BENDING OF TWO COUPLED ORTHOTROPIC PLATE STRIPS OF DIFFERING 
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RIGIDITY UNDER THE EFFECT OF UNIFORMLY DISTRIBUTED LOADS» (POL)  MECHANIKA« 
N0*15t P.23« I96S 

IM. VlNSON«J«R«  »NEW TECHNIQUES OF SOLUTION FOR PROBLEMS IN THE THEORY OF ORTHO- 
TROPIC PLATES«  PH«0*DlSSERTATION«UNIV«OF PENNSYLVANIA. 1961 

»ot.vINSON«J.R. + M«A«BRULL* «APPROXIMATE SOLUTIONS FOR RECTANGULAR ORTHOTROPIC 
PLATES* UN IV»OF PENNSYLVANIA«TOMNE SCHOOL« TECH.REPT« 1« CONTRACT NONR SSI 
(44). 1964 

tel. VlNSON.J.R. ♦ M*A»BRULL«  «NEW TECHNIQUES OF SOLUTION FOR PROBLEMS IN THE 
THEORY OF ORTHOTROPIC PLATES*  PER&AA40N/PROCEEDINGS OF FOURTH U.S« NATIONAL 
CONGRESS«BERKELEY. P.817« 1962 

kM. VlTOLS.V». R.J.CLIFTON + T.AU«  »ANALYSIS OF COMPOSITE BEAM BRIDGES BY ORTHO- 
TROPIC PLATE THEORY»  ASCE JOURNAL OF THE STRUCTURAL DIVISION« VOL.89. N0.ST4* 
P.71« AUG 1963 

Mfc «ILOC«P*  «RECTANGULAR ANISOTROPIC PLATE WITH CLAMPED EDGES*  ARCHIVUM MECHANIKI 
STOSOWANEJ« VOL.12« NO.2. P.241« 1960 

i0fr.«ILDC«P.  »THE GENERAL SOLUTION FOR A RECTANGULAR ORTHOTROPIC PLATE EXPRESSED 
BY A DOUBLE TRIGONOMETRIC SERIES»  ARCHIVUM MECHANIKI STOSOWANEJ. VOL.10« NO. 
£• P.746. 195B 

io7. WITTRICK «W.H.  »CORRELATION BETWEEN SOME STABILITY PROBLEMS FOR ORTHOTROPIC 
AND ISOTROPIC PLATES UNDER BIAXIAL AND UNIAXIAL DIRECT STRESS»  AERONAUTICAL 
QUARTERLY« VOL.4« PARTI« P.83« AUG 19S2 

wC. W0INOWSKY-KRIEG£R«S.  »ON THE DEFLECTION OF ORTHOTROPIC PLATE STRIPS BY MEANS 
OF CONCENTRATED LOADS» (GER)  INGENIEUR-ARCHIV« VOL.29« N0.2« P.90« 19S7 

lef. yAMANA.M.  »ON THE ELASTIC STABILITY OF AEROPLANE STRUCTURES»  (JAP)  JOURNAL 
OF THE FACULTY OF ENGINEERING«TOKYO UNIV.« VOL.20« NO.8« P.163« 1933 

HO.YETTRAM«A.L. + H.M.HUSAIN«  »GRID-FRAMEWORK METHOD FOR PLATES IN FLEXURE» 
AfCE JOURNAL OF THE ENGINEERING MECHANICS DIVISION« VOL.91« N0.EM3« .»UNE 196S 

HI. YtSUFF.S.  »LARGE DEFLECTION THEORY FOR ORTHOTROPIC RECTANGULAR PLATES SUB- 
JECTED TO EDGE COMPRESSION»  JOURNAL OF APPLIED MECHANICS« VOL.19« NO.4« P.446« 
CEC 1952 

112. ZlENKIEWICZ«O.C. ♦ Y.K.CHEUNG.  »THE FINITE ELEMENT METHOD FOR ANALYSIS OF 
CLASTIC IS0T.9OPIC AND ORTHOTROPIC SLABS»  PROCEEDINGS OF THE INSTITUTION OF 
CIVIL ENGINEERS« VOL.28« PAPER 6726« P.471« AuG 1964 
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SECTION B — SANDWICH PLATES 

IIS, ALEKSANOROVA«A«V*(EO*)  «PROBUEMS IN THE ANALYSIS OF ELEMENTS OF AVIATION CON- 
STRUCTION« (RUSS)  MOSCOM/STATE PUBLISHING HOUSE OF DEFENSE INOUSTRVt 19S« 

U4. ALWAN«A«M*  «LAR6E AND SMALL DEFLECTION ANALYSES APPLIED TO RECTANGULAR SAND- 
WICH PLATES WITH ORTHOTROPIC CORES*  PH.D. THESIS« UNIV.OF WISCONSIN« 19*3 

(IS-ALW/^«A«M«  «LARGE DEFLECTION OF SANDWICH PLATES WITH ORTHOTROPIC CORES«  AIAA 
JOURNAL« VOL«2« NO«10«« P«1B20« OCT 1964 

life. ANDCRSON«M.S.  «OPTIMUM PROPORTIONS OF TRUSS-CORE AND WEB-CORE SANDWICH PLATES 
LOADED IN COMPRESSION*  NASA TN 0-96« SEPT 1989 

117. ANDERSON «M»S« ♦ R«G.UP0EGRAFF«  «SOME RESEARCH RESULTS ON SANDWICH STRUCTURES« 
NACA TN-4009* JUNE 1937 

0 

US. BENSON«A«S« ♦ JaMAVERS«  «GENERAL INSTABILITY AND FACE WRINKLING OF SANDWICH 
PLATES—UNIFIED THEORY AND APPLICATIONS«  AIAA«3RD AEROSPACE SCIENCES MEETING« 
PA^ER 66-138« JAN 1966 

IKf. Bl JLAARD«P«P«  «ON THE OPTIMUM DISTRIBUTION OF MATERIAL IN SANDWICH PLATES IN 
THEIR PLANE«  PROCEEDINGS OF THE 1ST U«S.NATIONAL CONGRESS OF APPLIED MECHAN- 
ICS« P.373. I9S2 

I», el JLAARD«P«P«  «STABILITY OF SANDWICH PLATES«  JOURNAL OF AERONAUTICAL SCIENCES« 
VOL«16« N0.9* P«S73« SEPT 1949 

III. BOLLER«K.H. + C*B*NORRIS«  «EFFECT OF SHEAR STRENGTH ON MAXIMUM LOADS OF SANO- 
l ICH COLUMNS«  FOREST PRODUCTS LAB«« REPT NO« IBIS« MAR 19SS 

\U,  BRUHN«E#F«  »ANALYSIS AND DESIGN OF FLIGHT VEHICLE STRUCTURES*  CINCINNATI/ 
TR1-STATE OFFSET« 1965 

U), B(,RNS«AeB*  «MINIMUM WEIGHT ANALYSES FOR HONEYCOMB SANDWICH PLATES AND SHELLS* 
LOCKHEED MISSILES AND SPACE CO«* REPT.NO.2-60-64-31» JULY 1964 

lJ>4. CHANG.C.C.t I.K.EBCIOGLU + C.H.HAIGHT.  *G£NERAL STABILITY ANALYSIS  OF 
ORTHOTROPIC SANDWICH PANELS FOR FOUR DIFFERENT BOUNDARY CONDITIONS* (GER) 
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK« VOL«42« N0.9« SEPT 1962 

US. CHENG.S.  «ON THE THEORY  OF BENDING OF SANDWICH PLATES*  4TH U*S« NATIONAL 
CONGRESS OF APPLIED MECHANICS. P.SI1« 1962 

124. «COMPOSITE CONSTRUCTION FOR FLIGHT VEHICLES «PARTS Ulltlll*  MILITARY HANDBOOK 
23« OEPT. OF DEFENSE 

127. DUNOROVA«V«« V.KOVARIK« ♦ P.SLAPAK.  »THEORY OF SANDWICH PLATES* (GER)  ACT A 
TECHNICA«PRAGUE. VOL.9« NO.3« P.261* 1964 

US.ERINGEN.A.C.  «BENDING AND BUCKLING OF RECTANGULAR SANDWICH PLATES*  PROCEEDINGS 
OF THE 1ST J.S.NATIONAL CONGRESS OF APPLIED MECHANICS. P.3BI« 1992 
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in.FAN»T»C.»      «FACE   WRINKLING  MOOII   OF   BUCKLING     OF   SANDWICH  PANELS*     RANO  CORP«« 
rEPT*PO202*   AUG   1965 

ISO. FLUSCEtW»      «THE  OPTIMUM  PROBLEM   OF   THE   SANDWICH  PLATE*      JOURNAL  OF   APPLIED 
MECHANICS«   VOL*19«   P.I04«    1952 

| 
lit. FOSS« J«l«      *FOR   THE   SPACE   AGE«   A   BIBLIOGRAPHY  OF   SANDWICH  PLATES  AND   SHELLS« 

DOUGLAS   AIRCRAFT   CO««   REPT«SM-42B63«    19*2 

m.GOOOIER« J«N«      «CYLINDRICAL   BUCKLING  OF   SANDWICH  PLATES*     JOURNAL  OF   APPLIED 
u MECHANICS«   VOL«13«   P«2S3«    1946 

I 
m. QOODIER« J«N«   ♦  HSU«      «MONSINUSOIDAL   BUCKLING MOOES  OF   SANDWICH PLATES*     JOURNAL 

OF   AERONAUTICAL   SCIENCES«   V0L«21«   NO.8«   P«525«    1954 
i 

»14. GOODIER« J«N«   ♦   l«M«NEOU«      »THE   EVALUATION  OF  THEORETICAL  CRITICAL   COMPRESSION 
IN   SANDWICH   PLATES*      JOURNAL   OF   AERONAUTICAL   SCIENCES«   V0L«I8«   P«649«    1951 

115. GRAZIANO«E«E«      *ALL-METAL   SANDWICHES  EXCEPT   HONEYCOMB-CORE«   AN  ANNONATED 
BIBLIOGRAPHY*     LOCKHEED  AIRCRAFT   CO««   RCPT«3-77-62-5/'SB-62-B«   1962 

13». GUEST«J«    4-   J.SOLVEY«      «ELASTIC   STABILITY   OF   RECTANGULAR   SANDWICH  PLATES   UNDER 
BIAXIAL   COMPRESSION*     AERONAUTICAL   RESEARCH LAB« «MELBOURNE« AUSTRALIA«   REPT« 
nM-251«   MAY   1957 

ty.  HMSIP«L«M*      »A   SURVEY   OF  MODERN  DEVELOPMENTS   IN   THE   ANALYSIS  OF  SANDWICH 
STRUCTJRES«     APPLIED   MECHANICS   REVIEWS«   VOL.IB.   N0«2«   P«93«   FEB   1965 

IM. HARRIS«B«J«   +   W«C«CRISMAN«      «FACE-WRINKLING  MODE   OF   BUCKLING  OF  SANDWICH   PANELS« 
ASCE   JOURNAL   OF  ENGINEERING   MECHANICS«   V0L«91«   N0«EM3«   P.93.   JUNE   1965 

iVt. HOFF«N«J«      «BENDING   AND  BUCKLING   OF   RECTANGULAR   SANDWICH  PLATES«     NACA   TN-2225« 
1950 

140. HOFF«N«J«      «THE   BUCKLING  OF   SANDWICH  STRUCTURAL  ELEMENTS*     SHERMAN  FAIRCHILD 
rUBL«FUNO  PAPER«    INSTITUTE  OF   AERONAUTICAL   SCIENCES«   PREPRINT   165«   P«I3«    1946 

141. HCFF.N.J«   +   S*E«MAUTNER«      *BENOING   AND  BUCKLING  OF   SANDWICH  BEAMS*     JOURNAL  OF 
AERONAUTICAL   SCIENCES«   VOL«15«   P«707«   DEC   1948 

14t. HOFF♦N«J«   +   S*E«MAUTNER«      «THE   BUCKLING OF   SANDWICH-TYPE  PANELS«     JOURNAL   OF 
AERONAUTICAL   SCIENCES«   VOL« 12«   NO«3«   P.285«   JULY   1945 

l«S.HOPKINS«H«C«   4   S«PEARS0N«      «THE   BEHAVIOR OF  FLAT   SANDWICH  PANELS  UNDER  UNIFORM 
TRANSVERSE  LOADING«     ROYAL   AIRCRAFT  ESTABLISHMENT«   REPT«SME  3277«    1944 

lH.H&RVAY«G«      «BENDING  OF  HONEYCOMBS   ANi/  PERFORATED  PLATES«     JOURNAL   OF   APPLIED 
MECHANICS.   VOL«19«   P.122«    1952 

141 HUBKA«R«E««   N«F«OOW«   ♦  P.SE10E«      «RELATIVE   STRUCTURAL   EFFICIENCIES  OF  FLAT 
BALSA-CORE   SANDWICH  AND   ST IFFENED-PANEL  CONSTRUCTION«     NACA  TN-2514«    1951 

I44.JOHNSON« J«£«JR«   ♦  J.W.SEMONI AN«      «A   STUDY  OF  THE EFFICIENCY  OF HIGH-STRENGTH« 
STEEL«   CULLULAR-CORE   SANDWICH   PLATES   IN  COMPRESSION«     NACA   TN-37S1«   SEP   1956 
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|47. KAECHCUEtL.E«      »MINIMUM   WEIGHT   DESIGN  OF   SANDWICH  PANELS«     RAND CORP« •   REPT. 
RM-ia9St   MAP   1987 

14«. KEEP«L«   +  B«J*LAZAN«      »DAMPING   AND  FATIGUE   PROPERTIES   OF   SANDWICH  CONFIGURA- 
TIONS   IN FLEXURE*      ASD*    TR-61-646»    1961 

I4H.  KlMELtW.R.      »ELASTIC   BUCKLING  OF  A   SIMPLY   SUPPORTED  RECTANGULAR   SANDWICH  PANEL 
SUBJECTED   TO  COMBINED  EDGEWISE  BENDING   AND   COMPRESSION»     FOREST  PRODUCTS   LAB»* 
REPT.1657«   SEPT   1956 

ISO-  KOVARIKtV.      »FINITE-DEFLECTION   THEORY   OF   SANDWICH  PLATES»     ARCHIVUM   MECHANIKI 
STOSOWANEJ«   VOL*17*   NO«4*   P.363«    1965 

«I.   KUENZI*E*W.      »MINIMUM   WEIGHT   STRUCTURAL   SANDWICH»     FOREST   PRODUCTS   LAS« •   REPT« 
f PL.-086*   OCT   1965 

ISZ.   |CUENZI«E«W*      »STRUCTURAL   SANDWICH  DESIGN   CRITERIA»     FOREST   PRODUCTS   LAB«*   REPT« 
2161*   OCT   1959 

IS3, KUENZI*E*W**   W.S.ERICKSEN*    +   J.J.ZAHN«      »SHEAR   STABILITY   OF   FLAT   PANELS   OF 
SANDWICH  CONSTRUCTION»     FOREST  PRODUCTS   LAB«.   REPT.    1560.   MAY   1962 

154. LEWIS.W.C.      »DEFLECTION   AND   STRESSES   IN   A  UNIFORMLY   LOADED«   SIMPLY   SUPPORTED* 
RECTANGULAR   SANDWICH   PLATE—EXPERIMENTAL   VERIFICATION  AND   THEORY»      FOREST 
PRODUCTS  LAB.•   REPT.ie47A«   DEC   1956 

/65.  LlBOVEtC.   +   S.B.BATDORF*      »A   GENERAL   SMALL-DEFLECTION   THEORY  FOR FLAT   SANDWICH 
PLATES«     NACA   REPT.   NO.899*    1948 

ISA. LlBOVE.C.   +   R.E.HUBKA*      »ELASTIC   CONSTANTS   FOR   CORRUGATED-CORE   SANDWICH   PLATES» 
NACA   TN-22e9*    1951 

157.   LOWV*M.J.   +   R.I.JAFFEE«      »ON   THE  DEVELOPMENT   OF   LOW-COST«   FORM ABLE«   ALL-METAL 
SANDWICH  PANELS   WITH   CORRUGATED   CORES*     AEROSPACE   ENGINEERING«   VOL.20«   NO«11« 
P.14«   NOV   1961 

15«. MARCH»H.W.      »FLAT   PLATES  OF   PLYWOOD   UNDER  UNIFORM   OR  CONCENTRATED   LOADS» 
FOREST   PRODUCTS   LAB««   REPT«1312«   MAR   1942 

IS?. MARCH*H.W.      »STRESS-STRAIN   RELATIONS   IN   WOOD   AND  PLYWOOD  CONSIDERED   AS   ORTHO- 
TROPIC  MATERIALS*     FOREST   PRODUCTS  LAB.•   REPT«1503*   FEB   1944 

ltO.MARCH*H.W*      »SUMMARY   OF   FORMULAS  FOR  FLAT   PLATES   OF   PLYWOOD   UNDER   UNIFORM   OR 
CCNCENTRATEO  LOADS*      FOREST   PRODUCTS  LAB.«   REPT.1300*   OCT   1941 

iW. MARCH.H.W.   *   C.B.SMITH      *BUCKLING  LOADS  OF   FLAT   SANDWICH  PANELS   IN      COMPRESSION. 
VARIOUS   TYPES   OF   EDGE   CONDITIONS*     FOREST   PRODUCTS  LAB««   REPT«1S29«   MAR   1956 

ia.MlNOLIN.R.0.      »FLEXURAL   VIBRATIONS  OF   ELASTIC   SANDWICH  PLATES»     COLUMBIA   UNIV.« 
ONR   TR  NO.35«    1959 

|6S. MUSHTARI.K.M«      «APPLICABILITY   OF  DIFFERENT   THEORIES  OF  SANDWICH  PLATES*   (RUSS) 
IZVESTIYA   AKADEM1I   NAUKtSSSR*   OTOELENIE   TEKHNICHESKIKH NAUK«   N0«6«    P«163«    1960 
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144. NORRIS«C«B«     «COMPRESSIVE   BUCKLING  CURVES FOR  FLAT   SANDWICH PANELS  WITH 
ISOTROPIC  FACINGS   AND   ISOTROPIC   AND  ORTHOTROPIC   CORES*     FOREST  PRODUCTS   LAO«« 
REPT*1854t   JAN   1980 

l«.OLSEN«H,   +   F*RElNITZHUBERt      «TWO-LAYERED  PLATES*   (CER>      BERLIN«    19S0 

IM.PENZICN« J*   ♦  T.DIDRIKSSON«      «EFFECTIVE   SHEAR  MODULUS   OF   HONEYCOMB  CELLULAR 
STRUCTURE»     AIAA   JOURNAL«   VOL.2«   NO«3«   P*531«   MAR   1964 

147. pLANTEMAtFtw«     «SANDWICH   CONSTRUCTION—THE   BENDING  AND  BUCKLING OF   SANDWICH 
BEAMS«   PLATES«   AND   SHELLS«      NEW   YORK/JOHN   WILEY   +   SONS«    1966 

l«S. RAVtLLE*M«E*     «DEFLECTION  AND   STRESSES   IN   A  UNIFORMLY  LOADED«   SIMPLY   SUPPORTED 
RECTANGULAR   SANDWICH   PLATE«      FOREST   PRODUCTS  LAB*«   REPT«1847«   SEPT    1962 

IWi   REISSNER*£»      «FINITE   DEFLECTIONS   OF   SANDWICH  PLATES«      JOURNAL  OF   AERONAUTICAL 
SCIENCES«   VOL«IS«   NO.7«   P.435«   JULY   1948 

t7e. «SANDWICH  CONSTRUCTION  FOR   AIRCRAFT«   PARTS   I   AND   II«     FOREST   PRODUCTS   LAB.« 
/NC-23   PANEL«   U.S.GOVT.PRINTING  OFFICE«    19S8 

m-SEIDE«P.      «COMPRESSIVE  BUCKLING   OF  FLAT   RECTANGULAR  METALITE   TYPE   SANDWICH 
PLATES   WITH  SIMPLY   SUPPORTED   LOADED  EDGES   AND   CLAMPED  UNLOADED  EDGES«      NACA   TN- 
1886«   MAY    1949 

(72. SCIOe*P.      «SHEAR   BUCKLING  OF   INFINITELY   LONG  SIMPLY   SUPPORTED   METALITE   TYPE 
CANDWICH PLATES«     NACA  TN-1910«    1949 

I7S. SEIDE«P.   ♦  E.Z.STOWELL«      «ELASTIC  AND  PLASTIC  BUCKLING  OF   SIMPLY   SUPPORTED 
SOLID-CORE   SANDWICH   PLATES   IN   COMPRESSION«     NACA  REPORT  967«    1950 

>74. SMITH.R.C.T.     «BUCKLING  OF   FLAT   PLYWOOD  PLATES    IN  COMPRESSION«      AUSTRALIAN 
REPORT   ACA-12«    1944 

ITS. STEVENS«G.H.     «COMPRESSIVE   AND   SHEAR  PROPERTIES   OF   TWO CONFIGURATIONS   OF 
SANDWICH  CORES   OF   CORRUGATED  FOIL«     FOREST  PRODUCTS  LAB.«   REPT.I889«   DEC   1962 

1%. THURSTON«G.A.      «BENDING  AND  BUCKLING  OF  CLAMPED   SANDWICH PLATES«     JOURNA«    OF 
AERONAUTICAL  SCIENCES«   VOL.24*   NO.6«   P.407«   JUNE   1997 

177. WANG*C«-T.     «PRINCIPLE  AND   APPLICATION  OF  COMPLEMENTARY ENERGY  METHOD  FOR  THIN 
HOMOGENEOUS   AND   SANDWICH  PLATES  AND   SHELLS  WITH  FINITE  DEFLECTIONS«     NACA 
TN-262Q«    1952 

174, WEI>2L«R.C.   +  A.S.KOBAYASHI*      «ON  THE   LOCAL  ELASTIC   STABILITY   OF  HONEYCOMB 
FACE  PLATE  SUBJECTED   TO  UNIAXIAL  COMPRESSION«      JOURNAL  OF  AERONAUTICAL   SCIENCES 
VOL.26*   P.672«    1959 

rn.W£MPNER«G.A.   4-   J.L.BAYLOR«      «GENERAL   THEORY   OF   SANDWICH PLVTES  WITH  DISSIMILAR 
FACINGS«      INTERNATIONAL   JOURNAL   OF   SOLIDS   AND   STRUCTURES«   VOL.1«   NO.2«   MAY   1965 

|&a WEMPNER«G.A.   +   J.W.MC   KINLEY«      «CORRUGATED   OPEN-FACE   SANDWICH  PLATE«      AEROSPACE 
ENGINEERING.   P.56*   DEC   1962 
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161. WIU.IAM3«D« ET AL«  »PLAT SANDWICH PANELS UNDER COMPRESS I VE END LOADS*  ROYAL 
AIRCRAFT ESTABLISHMENT« HEPT .AO-3I7*« 1941 

182. WITTRICK.W«H«  «A THEORETICAL ANALYSIS OF THE EFFICIENCY OFSANOW1CN CONSTRUC- 
TION UNDER COMPRESS IVE END LOAD*  AdRONAUTICAL RESEARCH COUNCIL RM-2016« 
APR 1945 

l»i. YEN«K.T«« S.GUNTURKUN + F.V.POHLE«  «DEFLECTIONS OF A SIMPLY SUPPORTED RECT- 
ANGULAR SANDWICH PLATE SUBJECTED TO TRANSVERSE LOADS*  NACA TN-2M1« DEC 1991 

IS4. YEN.K.T«. V*L*SALERt40 ♦ N.J.HOFF«  »BUCKLING OF RECTANGULAR SANDWICH PLATES 
SUBJECTED TO EDGEWISE COMPRESSION WITH LOADED EDGES SIMPLY SUPPORTED AND UN- 
LOADED EDGES CLAMPED«  NACA TN-2SS6« JAN 1992 

16S.YU«Y.-Y.  «A NEW THEORY OF SANDWICH PLATES« GENERAL CASE«  POLYTECHNIC 1NST« OF 
BROOKLYN« CONTRACT AFOSR (»-59-1163« 1999 

l«LYU«N.-Yc  «DAMPING OF KI EXURAL VIBRATIONS OF SANDWICH PLATES*  JOURNAL OF AERO- 
NAUTICAL SCIENCES' VO^»29« P.790« 1962 

167. yU«Y.-Y«  «FLEXURAL VIBRATIONS OF ELASTIC SANDWICH PLATES«  JOURNAL OF AERO- 
NAUTICAL SCIENCES« V0L«27« P.272« I960 

»86. VU«V.-Y«  «SIMPLIFIED VIBRATION ANALYSIS OF ELASTIC SANDWICH PLATES*  JOURNAL 
OF AERONAUTICAL SCIENCES« VOL.27. P.894« 1960 

181. YU«Y.-Y« ♦ N.REN«  «DAMPING PARAMETERS OF LAYERED PLATES AND SHELLS*  AIR FORCE 
REPT.64-2087« APR 1964 

I*J0. YU5UFF«S.  «FACE WRINKLING AND CORE STRENGTH IN SANDWICH CONSTRUCTION*  JOURNAL 
OF THE ROYAL AERONAUTICAL SOCIETY« VOL.64« P.164« 1960 

Hi. YUSUFF«S.  «THEORY OF WRINKLING IN SANDWICH CONSTRUCTION*  JOURNAL OF THE 
ROYAL AERONAUTICAL SOCIETY« VOL.59« P.30« 1995 

hZ. ZAHN.J.J. + S.CHENG.  »EDGEWISE COMPRESSIVE BUCKLING OF FLAT SANDWICH PANELS« 
LOADED ENDS »IMPLY SUPPORTED AND SIDES SUPPORTED BY BEAMS*  FOREST PRODUCTS 
LAB.. REPT.019« FEB 1964 
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SECTIOW   C   —   CORRUGATED   PLATES 

|<i3. ANOF JEVAtL.E«   «CALCULATION   OF   THE   PROPERTIES   OF   CORRUGATED   MEMBRANES*   (RUSS) 
PRIBOROSTROENIC*   NO»3t   P.M.    1956 

114.  ASHWELL«D»G»      «THE   STABILITY   IN  BENDING  OF   SLIGHTLY   CORRUGATED  PLATES*      JOURNAL 
OF   THE   ROYAL   AERONAUTICAL   SOCIETY,   VOL.56«    NO.502»   P.782.   OCT    I9t>2 

ifS.  BERGMAN.S.   ♦   H.PEISSNERt      «ON   THE   BENDING  OF   CORRUGATED   SHEET-STEEL   STRIPS 
UNDER   TANGENTIAL   STRESS*       (GER)       ZEITSCHRIFT   FUR   METALLKUNDE.    VOL.20.   P.47S. 
192« 

Hfc. CALDWELL*J.B.      «BENDING   STRENGTH   OF   CORRUGATED   PLATE*     ENGINEERING.   VOL.174« 
NO.4528«   P.609«   NOV    1952 

•17. CALDWELL« J»B.      «THE   STRENGTH   OF   CORRUGATED   PLATING   FOR   SHIPS   BULKHEADS** 
CUARTERLY   TRANSACTIONS   OF   THE    INSTITUTION   OF   NAVAL   ARCH ITECTS«LONDON.   VOL.97« 
NO.3«   P.495«    JULY    1955 

I«}«. DEAN.W.R.      «THE   ELASTIC   STABILITY   OF   A   CORRUGATED   PLATE*     PROCEEDINGS   OF   THE 
ROYAL   SOCIETY«LONDON«    VOL.111«   P.144«    1926 

lit. HARINX«J.A.      «DESIGN   OF   CORRUGATED  DIAPHRAGMS«      ASME   ANNUAL   MEETING«   PAPER 
BB-A-112.   NOV.1955 

Zoo. HARRIS.L.A.   +   R.R.AUELMANN«      «STABILITY   OF   FLAT.   SIMPLY   SUPPORTED*   CORRUGATED- 
CORE   SANDWICH  PLATES   UNDER  COMBINED   LOADS«      JOURNAL   OF   AEROSPACE   SCIENCES«   VOL. 
£7«   P.S25«   JULY    I960 

to». LEOUEUX.P.      «STRUCTURES   OF   CORRUGATED   STAINLESS   STEEL«   (FH)      ASSOCIATION   FRANC- 
AI SE   DES   INGENIEURS   ET   TECHNICIENS  DE   L«AERONAUT IOUE   ET  DC   L»ESPACE•7TH.    1965 

i02.oKlJB0«H,      «THE   INFLUENCE   OF   THE   FORM   OF   CORRUGATION   UPON   THE   STRENGTH   OF   A 
CORRUGATED  PLATE.   PART    I«      REP.INST.OF   HIGH   SPEED   MECHANICS.   TOHOKU  UNIV.. 
VOL.1   P.69«    1951 

idi. PLAINEVAUX.J.E.      «OPTIMUM   PROFILE   OF   CORRUGATED   PLATES   AND   PILE   TANKS* 
ACADEMIE  ROYALE   DE   BELGIOUE   BULLETIN   DE  LA   CLASSE   SCIENCES«    VOL.40«   NO.9'.   P. 
962*    1954 

«So^. PLATUS.O.L.   +   S.UCHIYAMA«      «VERY-LARGE-DEFLECT I ON   BEHAVIOR   OF   CORRUGATED   STRIPS« 
AI/A   JOURNAL«    VOL.3«   NO.8«   P.1549«    AUG   1965 

Z6S.   SHIBUYA.I.      «SOME   NOTES   ON   CORRUGATED   PLATES*   (JAP)      JOURNAL   OF   THE   AERONAUT- 
ICAL   SOCIETY   OF   JAPAN.    VOL.7«   NO.61.    1940 

&*. TORVIK.P.J.   ♦   B.J.LAZAN.      *A   CORRUGATED   ADDITION  FOR   INCREASED  DAMPING   IN 
FLEXURE*     WRIGHT-PAT.AIR   FORCE   BASE•A.F.MATER I ALS   LAB.«   AFML-TR-64-373*    JAN 
1965 

«b/.MEBER.C.      «ON   THE   INFECTIVE   WIDTH   OF   A   Bl AX I ALLY   CORRUGATED   STEEL   PLATE   RE- 
INFORCED  BY   STIFFENERS*    (GER)      BAUINGENIEUR.   VOL.26«   NO.3«    P.172.   AND   NO.5« 
P.172*    1953 
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SECTION D — EXTEPNALLY STIFFENED PUATES 

2c*. ALLEN.D.N.D, + R.T.SEVERN «COMPOSITE ACTION OF BEAMS AND SLABS UNDER TRANS- 
VERSE LOADING«PART III« A RECTANGULAR SLAB WITH REPEATED SPAN«ISb BEAMS «HOSE 
FLEXURAL STIFFNESS VARIES ACROSS THE SPAN*  STRUCTURAL ENGINEER* VOL.40.NO.6« 
JUNE 1962 

Uf\. ANOO.N. *ON THE STRENGTH OF ORTHOGONALLY STIFFENED PLATES < 1ST REPORT« THEORET- 
ICAL SOLUTION OF ORTHOTROPIC PLATE SUBJECTED TO BENDING)* REPORT OF THE TRANSP 
ORTATION TECHNICAL RESEARCH INSTI TUTE«TOKYO« N0.48. MAR 1962 

210, *NOO«N.  »ON THE STRENGTH OF ORTHOGONALLY STIFFENED PLATES (2NO REPORT« EXPERI- 
MENTAL STUDIES ON BENDING OF ORTHOGONALLY STIFFENED PLATE AND COMPARISON «ITH 
PENDING THEORY OF ORTHOTROPIC PLATE»»  REPORT OF THE TRANSPORTATION TECHNICAL 
RESEARCH INSTITUTE. NO.93« NOV 1962 

IU. AU«T. + J.C.L.CHANG« «FUNDAMENTALS OF ORTHOTROPIC PLATE DESIGN* AISC ENGINEER- 
ING JOURNAL« VOL.1« NO.2. P.34« APR 1964 

HZ.  BURNS.A.B. + J.SKOGH.  «COMBINED LOADS MINIMUM WEIGHT ANALYSIS OF STIFFENED 
• PLATES AND SHELLS«  AIAA JOURNAL OF SPACECRAFT AND ROCKETS. VOL.3» P.239. 

FEB 1966 

2)3. BURNS.A.B. 4 J.SKOGH.  «MINIMUM HEIGHT ANALYSIS OF STIFFENED PLATES AND SHELLS 
A SUBJECTED TO COMBINED LOADS«  LOCKHEED MISSILES AND SPACE CO.« REPT.NO. 

2-60-64-29. JUNE 1964 

2(4. CALDWELL. J.B.  «ELASTIC INSTABILITY OF STIFFENED SHEET UNDER COMPRESSION REACTED 
I P.r   SHEAR«  JOURNAL OF THE ROYAL AERONAUTICAL SOCIETY« VOL.63* MO.582. P.366« 

JUNE 1959 

Zi5. CHANG.J. «ORTHOTROPIC-PLATE CONSTRUCTION FOR SHORT-SPAN BRIDOE^* CIVIL ENGINE- 
ERING. P.53« DEC 1961 

Zlfe. CHANG.J,  «ORTHOTROPIC PLATE DECK SHOWS MERIT IN SHORT SPAN HIGHWAY BRIDGES« 
f MODERN WELDED STRJCTURES. VOL.1. P.71« JAN 1964 

tl7. CHAPMAN«J.C. -f J.E.SLATFORO.  «BENDING OF PLATING «ITH WIDELY SPACED STIF- 
FfNERS«  INSTITUTION OF MECHANICAL ENGINEERS* PREPRINT* HOV I9S6 

218. CfX.H.L. + J.R.RIDDELL.  «BUCKLING OF A LONGITUDINALLY STIFFENED FLAT PANEL« 
BRITISH A.R.C.«REPT.NO.11374. APR 1948 

111. cRAWFORD«R.F.  «MINIMUM WEIGHT POTENTIAL FOR STIFFENED PLATES AND SHELLS»  AIAA 
JOURNAL« VOL.1« NO.4« P.879« APR 1963 

2ZO. CS0NKA«P.  «APPLICATION OF THE THEORY OF ORTHOTROPIC PLATES TO OBTAIN RESULTS OF 
LOADING TESTS ON REINFORCED CONCRETE RIB SLABS*  <GER)   BAUTECHNIK. VOL.35. 
NO.11. P.436* NOV 1998 

IH.  «DESIGN MANUAL F "VR ORTHOTROPIC STEEL PLATE DECK BRIDGES»  AMERICAN INSTITUTE OF 
£TEEL CONSTRUCTION. N.Y.. NOV 1962 
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W. 00U*t»F9      »DESIGN   CHARTS  FOR   LONGITUDINALLY   STIFFENED   WING   COMPRESSION  PANELS* 
SOCIETY   OF   AUTOMOTIVE   ENGINEERS*    QUARTERLY   TRANSACTIONS«    VOL.3«    P.122«    1949 

Ui. DOW«N.F,    +   W.A.HICKMAN«      »COMPARISON   OF   THE   STRUCTURAL   EFFICIENCY   OF   PANELS 
HAVING   STRMGHT-WEB   AND  CURVED-WEB   Y-SECTION   STIFFENERS»      NACA   TN-ITB?« 
JAN   1949 

m.00W«N«F*   +   «•A.HICKMAN«      «DESIGN  CHARTS   FOR  FLAT  COMPRESSION  PANELS  HAVING 
LONGITUDINAL  EXTRUDED   Y-SECTION   STIFFENERS   AND   COMPARISON   WITH  PANELS   HAVING 
FORMED   2-SECTION   -iTIFFENERS»      NACA   TN-1389.   AUG    1947 

IIS. DOV«N«F.    +   IK.A.HICKMAN«      »DIRECT-READ I NO   DESIGN   CHARTS   FOR   24S-T3    ALUMINUM- 
ALLOY   FLAT   COMPRESSION   PANELS   HAVING   LONGITUDINAL   FORMED   HAT-SECTION   STIFFENERS 
AND   COMPARISONS   WITH   PANELS   HAVING   2-SECTION   STIFFENERS»      NACA   TN-2792«   MAR 
1952 

Mt. DOW«N.F, + W.A.HICKMAN« »DIRECT-READING DESIGN CHARTS FOR 75S-T ALUMINUM-ALLOY 
FLAT COMPRESSION PANELS HAVING LONGITUDINAL STRAIGHT-WEB Y-SECTIUN STIFFENERS» 
NACA   TN-1640.    AUG    1946 

«7.  OOW»N.F#«    W.A.HICKMAN   +   H.L.MC   CRACKEN,       »COMPRESS1VE-STRENGTH   COMPARISONS   OF 
FANELS   HAVING   ALUMINUM-ALLOY   SHEET   AND   STIFFENERS   WITH   PANELS   HAVING   MAGNESIUM- 
ALLOY   SHEET   AND   ALUMINUM-ALLOY   STIFFENERS»      NACA   IN-1274,    1947 

«». DOW»N.F#. W«A«HICKMAN« + B.W.ROSEN. »DATA ON THE COMPRESSIVE STRENGTH OF SKIN- 
STRINGER   PANELS   OF   VARIOUS   MATERIALS»      NACA   TN-3064.    JAN    1954 

221. DOW«N»F,« R.E.HUBKA + W.M.ROBERTS« »DIRECT-READING DESIGN CHARTS FOR 24S-T 
ALUMINUM ALLOY FLAT COMPRESSION PANELS HAVING LONGITUDINAL STRAIGHT-WEB Y- 
SECTION   STIFFENERS»      NACA   TN-J777.    JAN    1949 

ISO. DOW.N.F.    ♦   A.S.KEEVIL«JR.«      »DIRECT-READING   DESIGN   CHARTS   FOR   24S-T   ALUMINUM- 
ALLOY   FLAT   COMPRESSION   PANELS   HAVING   LONGITUDINAL   FORMED   Z-SECTION   STIFFENERS» 
NACA   TN-1778.    JAN    1949 

ZU.   EVANS.J.H«       »A   STRUCTURAL   ANALYSIS   AND   DESIGN   INTEGRATION   WITH   APPLICATION   TO 
THE   MIDSHIP   SECTION   CHARACTERISTICS   OF   TRANSVERSELY   FRAMED    SHIPS»       TRANSACTIONS 
OF   S.N.A.M.E.,    VOL.66«   P.244«    1958 

W.  FELDMAN.M.R.      »STABILITY   OF   ORTHOTROPIC   PLATES   WITH   STEP-WISE   VARIABLE 
STIFFNESS»    (RUSS)       SOVIET   PHYSICS-DOW_ADY(AMERICAN   INST.OF   PHYSICS).   VOL.53. 
NO.4.   P.353«   OCT    1961 

TSi, FLOOR«W.K.G«    +   T.J.BURGERHOUT«       »EVALUATION   OF   THE   THEORY   ON   THE   POST-BUCKLING 
BEHAVIOUR   OF   STIFFENED«    FLAT«    RECTANGULAR   PLATES   SUBJECTED   TO   SHEAR   AND 
NORMAL   LOADS»      NATIONAL   LUCHT   LAB.,AMSTERDAM.   REPT.S770«    1951 

^}4.GERARD.G.      »EFFICIENT   APPLICATIONS   OF   STRINGER   PANEL   AND  MULTICELL   WING   CON- 
STRUCTION»      JOURNAL   OF   AERONAUTICAL   SCIENCES«    VOL.16«    P.35«    1949 

2%5. GERARD«O.       »HANDBOOK   OF   STRUCTURAL   STABILITY—PART   V.   COMPRESSIVE    STRENGTH   OF 
FLAT   STIFFENED   PANELS»      NACA   TN-3785«    AUG    1957 

2ifc. Gt*ARD«G»   ♦   H.BECKER*       »HANDBOOK   OF   STRUCTURAL   STABILITY—PART   VI I«STRENGTH   OF 
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THIN-WING CONSTRUCTION»  NASA TN-D-162» SEPT 1909 

tir.  GlENCKE.E.  »ANALYSIS OF RIBBED PLATES. PARTS 1 AND 2» (GEP)  STAHLBAU. VOL.29. 
NO»I« P.l. JAN 1960. AND VOL.29. NO.2. ^.47. FEB 1960 

IW.  GlENCKE.E.  »BASIC EQUATIONS FOR ORTHOTROPIC PLATES WITH ECCENTRIC STIFFENERS» 
(GER)  STAHLBAU« VOL.24. P.128.  1955 

Z^j. GIENCKE.E.  »FUNDAMENTAL EQUATIONS FOR ORTHOTROPIC PLATE WITH ECCENTRIC 
STIFFENERS» (GER)  STAHLBAU. VOL.26. NO.6. P.128. JUNE 1955 

^40. GIULIANI .G.C»  »SLAB REINFORCED BY A SET OF EQUIDISTANT RIBS» (ITAL)   INGEGNERE» 
VOl .35» MO. 10. P.922. OCT 1961 

i.4\.  G^WZA'A. + P.SEIDE.  »MINIMUM WEIGHT DESIGN OF SIMPLY SUPPORTED TRANSVERSELY 
STIFFENED PLATES UNDER COMPRESSION»  NACA TN-17I0. 1948 

2«. MAHLANDSR.L.A.  »OPTIMUM PLATE-STIFFENER ARRANGEMENT FOR VARIOUS TYPES OF 
LOADING»  JOURNAL OF SHIP RESEARCH» VOL.4. P.49. 1960 

i44. HlCKMAN.W.A. -f N.F.DOW. »DIRECT-READING DESIGN CHARTS FOR 75S-T6 ALUMINUM- 
ALLOY FLAT COMPRtiSlON PANELS HAVING LONGITUDINAL EXTRUDED Z-SECTION STIF- 
FENERS»  NACA TN-2435. FEB 1952 

«44. HCH.MES.M.  »STIFFENED PLATING UNDER TRANSVERSE LOAD»  QUARTERLY JOURNAL OF 
MECHANICS AND APPLIED MATHEMATICS« VOL.12. PART 4. 1959 

245 IRVING.J. + N.M'JLLINEUX.  »RECTANGULAR PLATES WITH STRINGERS AND RIBS»  JOURNAL 
CF AERONAUTICAL SCIENCES. VOL.21. NO.12. P.847. DEC 1954 

i4fc. jAEGER.L.G. + A.W.HENDRY.  »THE ANALYSIS OF INTERCONNECTED BRIDGE GIRDERS BY THE 
riSTRIBUTION OF HARMONICS*  THE STRUCTURAL ENGINEER. VOL.34. P.241« 1956 

147. JOJIC.K.V.   »THE BUCKLING OF A REINFORCED RECTANGULAR PLATE»  9TH CONGRESS OF 
: NTf-SNATIONAL APPLIED .^ECHAN I CS .UN I V. OF BRUSSELS. VOL.7. P.56. 1957 

Z4« KEMPNER.J.  »APPLICATION OF NUMERICAL PROCEDURE TO THE STRESS ANALYSIS OF 
STHINGER-REINFORCED PANELS*  NACA AkR L5C09A« 1945 

iVj KENNEDY«J.B. + M.W.MUGGINS.  »SERIES SOLUTION OF SKEWED STIFFENED PLATES»  ASCE 
JOURNAL OF THE ENGINEERING MECHANICS DIVISION. VOL.90. NO.EM1. FEB 1964 

Z50.KLITCHIEFF.J.M.  »ON THE STABILITY OF PLATES REINFORCED BY LONGITUDINAL RIBS» 
JOURNAL OF APPLIED MECHANICS« VOL.18. NO.4. P.364« DEC 1951 

i5). KONOO.J. + A.OSTAP£NKO.  »TEST ON LONGITUDINALLY STIFFENED PLATE PANELS WITH 
FIXED ENDS. STRAIN AND DIAL GAGE READINGS»  LEHIGH UNIV. FRITZ ENGINEERING LAB. 
REPT. 248.12« JULY 1964 

iSl. KOSOFSKV«F.   »ECCENTRICALLY STIFFENED ORTHOTROPIC PLATE« WITH VARIOUS BOUNDARY 
CONDITIONS»  PHoD.DISSERTATION« CARNEGIE INSTITUTE OF TECHNOLOGY. DEPT. OF C.E. 
!•*• 4 

251. LUNDOUIST.E.E. + E.Z.STOWELL.  »CRITICAL COMPRESSIVE STRESS FOR OUTSTANDING 
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FLANGES*  NACA TN-73«. 19A2 

J&4.«A3SONET«C«  »OPTHOTROPIC PLATES AND ORTMOTROPIC CYLINDRICAL SHELLS * ITH ASYM- 
METRIC RIBS* (FR)  PUBLICATIONS OF THE INTERNATIONAL ASSOCIATION FOR BRIDGE AND 
STRUCTURAL ENGINEER ING«ZUR ICH< VOL« 19. P.201. 1959 

ZS5. MAZURKIEWICZtZ*  *BENOING AND BUCKLING OF RECTANGULAR PLATE REINFORCED 
TRANSVERSELY BY RIBS WITH   VARIABLE RIGIDITIES*  BULLETIN ACAD.POLONAISE SCI.. 
VOL*10* NO«a« 1962 

254.(WC ELMANtJ.A*. M*M.MIKULAS + M.STfc;!^.  »STATIC AND DYNAMIC EFFECTS ON ECCENTRIC 
STIFFENING OF PLATES AND CYLINDRICAL SHELLS*   AIAA 2^0 ANNUAL MEETING. SAN 
FRANCISCO* PAPER 65-370. JULY 1965 

i57. MICHAEL «O.   »THE STRUCTURAL ACTION OF MULT 1-STRINGER SHEAR PANELS«   INTER- 
NATIONAL JOURNAL OF MECHANICAL SCIENCE. VOL.7. NO.8. AUG 1965 

*B«,MlCKS*W«R«   «A METHOD OF ESTIMATING THE COMPRESSIVE STRENGTH OF OPTIMUM SHEET- 
STIFFCNER PANELS FOR ARBITRARY MATERIAL PROPERTIES. SKIN THICKNESS AND STIF- 
FENCR SHAPES*  JOURNAL OF AERONAUTICAL SCIENCES. VOL.20» P.705. 1953 

^Sy. MlUEK.W.A. JR»  *AISC OPTHOTROPIC PLATE DESIGN MANUAL*  AI SC ENGINEERING JOURNAL. 
VOL.1. N0.2. P.40. APR 1964 

140. MUOLE*«*  »BULKHEADS WITH VERTICAL STIFFENERS AND HORIZONTAL GIRDERS«  TRANS- 
ACTIONS OF THE NORTHEAST COAST INSTITUTION OF ENGINEERS AND SHIPBUILDERS» VOL. 
■•9» MO*3. JAN 1963 

a,|. MEWMARK.N.M*  »A DISTRIBUTION PROCEDURE FOR THE ANALYSIS OF SLABS CONTINUOUS 
OVER FLEXIBLE BEAMS» UNIV.OF ILLINOIS ENGINEERING EXPERIMENT STATION, BULLETIN 
NO.304 

itf. tlOWACKl**»       »THE   STABILITY   OF   RECTANGULAR   PLATES   WITH   RIBS»      BULLETIN   ACA0EMIE 
POLONAISE   SCIENCEV  VOL.2.   NO.2.   P.85.    1954 

JtJ, PETERSON.F.F. .    E.S.JOHNSON   +   E.N.JACOBS.      »ORTHOGONALLY   STIFFENED   STEEL   PLATES» 
STANFORD   UN IV.MECANICAL   ENGR.LAB.«    NAVY   CONTRACT   N6~0NR-25513.    1949 

&+. PPLUGER.A.       »BUCKLING   PROBLEM   OF   OPTHOTROPIC   PLATES   WITH   HOLLOW   STIFFENERS1» 
(GER)       ZEITSCHRIFT   FUR   FLUGWISENSCHAFTEN.    VOL.5.    NO.6.    P.178.    JUNE    1957 

llA.   PFLUGER.A.       »OPTHOTROPIC   PLATES   WITH   HOLLOW   STIFFENERS»    (GER)       ÖSTERREICHISCHES 
INGENIEUR-ARCHIV«   VOL.2.   P«l?9*    1955 

IU.   pOCMOP*F.      »ON   THE   STABILITY   OF   LONG»    EQUID ISTANTL Y.    TRANSVERSELY   STIFFENED 
RECTANGULAR   PLATES»    ( ^R )       ÖSTERREICHISCHES    I NGEN I EUR-ARCH I V »W IEN.    VOL.6.    N0»5. 
P.387*    1952 

IWT.   pADOK*J.R.M.       »THE   STA'Ji.ITY   OF   STIFFENED   PLATES   AND   SHELLS»      GRONINGER. 
HOLLAND/NOORDHOFF,    1955 

^. RlCMART.F.E»*    N.M.NEWMARK   +   C.P.SIESS»    »HIGHWAY   BRIDGE   FLOORS»      UNIV.   OF 
ILLINOIS   ENGINEERING   EXPERIMENT   STATION»    BULLETIN   25 
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CONCLUSION 

The expressions given in this report should enable 

the analyst to calculate the stresses and deformations 

of flat plates of various configurations -- sandwich, 

corrugated, rib-reinforced, integrally stiffened -- due 

to static loading conditions. Various loading possi- 

bilities, in combination with a variety of end support 

conditions, are described. 

Perhaps the greater contribution of this report is 

the inclusion of the most complete list of references 

of work in the area of orthotropic plates.  The bibli- 

ography of Part 9 is divided according to subject matter 

in such a manner that a researcher in this field will 

find it convenient in locating publications pertinent 

to his work. 

A second report, which will be more suitable for 

design, will be published in the near future.  In this 

future publication, the author will present the infor- 

mation concerning orthotropic plates in such a manner 

that the designer will be able to make rational com- 

parisons between the various configurations of stiffened 

plates, based upon some standard criterion, such as 

weight or cost.  This work is presently taking place, 

and it will be presented in a report titled "Orthogonally 

Stiffened Plates:  A Design Handbook." 
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